题目内容

18.已知函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{4})}^{x},x<1}\\{{log}_{\frac{1}{2}}x,x≥1}\end{array}\right.$,则f(f(-1))=(  )
A.2B.-2C.$\frac{1}{4}$D.-$\frac{1}{2}$

分析 先求出f(-1)=($\frac{1}{4}$)-1=4,从而f(f(-1))=f(4),由此能求出结果.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{{(\frac{1}{4})}^{x},x<1}\\{{log}_{\frac{1}{2}}x,x≥1}\end{array}\right.$,
∴f(-1)=($\frac{1}{4}$)-1=4,
f(f(-1))=f(4)=$lo{g}_{\frac{1}{2}}4$=-2.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网