题目内容

7.已知椭圆的两焦点F1(-1,0)、F2(1,0),P是椭圆上一点且2|F1F2|=|PF1|+|PF2|,则此椭圆的标准方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

分析 设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),由题意可得c=1,再由椭圆的定义可得a=2,由a,b,c的关系,解得b,进而得到椭圆方程.

解答 解:设椭圆的方程为$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),
由题意可得c=1,
由题意的定义可得2|F1F2|=|PF1|+|PF2|=4=2a,
解得a=2,b=$\sqrt{{a}^{2}-{c}^{2}}$=$\sqrt{3}$,
即有椭圆的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
故答案为:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.

点评 本题考查椭圆的方程的求法,注意运用待定系数法,以及椭圆的定义,考查运算能力,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网