题目内容

9.已知函数$f(x)=sinωx•cosωx-\frac{{\sqrt{3}}}{2}+\sqrt{3}{cos^2}ωx({ω>0})$的最小正周期为π.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)若a,b,c分别为△ABC的三内角A,B,C的对边,角A是锐角,f(A)=0,a=1,b+c=2,求△ABC的面积.

分析 (Ⅰ)由已知利用三角函数恒等变换的应用化简函数解析式可得f(x)=sin(2ωx+$\frac{π}{3}$),利用周期公式可求ω,可得函数解析式,进而由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,(k∈Z),可得f(x)的单调递增区间.
(Ⅱ)由$sin({2A+\frac{π}{3}})=0$,又角A是锐角,可求A的值,利用余弦定理可求bc=1,根据三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(Ⅰ)$f(x)=sinωx•cosωx-\frac{{\sqrt{3}}}{2}+\sqrt{3}{cos^2}ωx$=$\frac{1}{2}sin2ωx-\frac{{\sqrt{3}}}{2}+\sqrt{3}•\frac{1+cos2ωx}{2}=sin({2ωx+\frac{π}{3}})$,…(2分)
∴T=$\frac{2π}{2ω}$=π,从而可求ω=1,…(3分)
∴f(x)=sin(2x+$\frac{π}{3}$)…(4分)
由2kπ-$\frac{π}{2}$≤2x+$\frac{π}{3}$≤2kπ+$\frac{π}{2}$,(k∈Z),可得:$kπ-\frac{5π}{12}≤x≤kπ+\frac{π}{12}({k∈Z})$,
所以f(x)的单调递增区间为:$[{kπ-\frac{5π}{12},kπ+\frac{π}{12}}]({k∈Z})$.…(6分)
(Ⅱ)∵f(A)=0,
∴$sin({2A+\frac{π}{3}})=0$,又角A是锐角,
∴$\frac{π}{3}<2A+\frac{π}{3}<\frac{4π}{3}$,
∴$2A+\frac{π}{3}=π$,即$A=\frac{π}{3}$.…(8分)
又a=1,b+c=2,
所以a2=b2+c2-2bc•cosA=(b+c)2-3bc,
∴1=4-3bc,
∴bc=1.…(10分)
∴${S_{△ABC}}=\frac{1}{2}bcsinA=\frac{{\sqrt{3}}}{4}$.…(12分)

点评 本题主要考查了三角函数恒等变换的应用,周期公式,余弦定理,三角形面积公式,正弦函数的单调性在解三角形中的综合应用,考查了转化思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网