题目内容

17.函数$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}\;,x≥4}\\{f(x+1)\;,x<4}\end{array}}\right.$,则f(log23)=(  )
A.$\frac{1}{24}$B.$\frac{1}{19}$C.$\frac{1}{11}$D.$-\frac{23}{8}$

分析 由已知中函数$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}\;x≥4}\\{f(x+1)\;x<4}\end{array}}\right.$,将x=log23代入可得答案.

解答 解:∵函数$f(x)=\left\{{\begin{array}{l}{{{(\frac{1}{2})}^x}\;x≥4}\\{f(x+1)\;x<4}\end{array}}\right.$,
将x=log23∈(1,2)
则f(log23)=f(log23+1)=f(log23+2)=f(log23+3)=$(\frac{1}{2})^{{log}_{2}3+3}$=$\frac{1}{24}$,
故选:A.

点评 本题考查的知识点是分段函数的应用,函数求值,难度不大,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网