题目内容

3.如图,由部分抛物线y2=mx+1(m>0,x≥0)和半圆x2+y2=r2(x≤0)所组成的曲线称为“黄金抛物线C”,若“黄金抛物线C”经过点(3,2)和(-$\frac{1}{2},\frac{\sqrt{3}}{2}$).
(1)求“黄金抛物线C”的方程;
(2)设P(0,1)和Q(0,-1),过点P作直线l与“黄金抛物线C”相交于A,P,B三点,问是否存在这样的直线l,使得QP平分∠AQB?若存在,求出直线l的方程,若不存在,请说明理由.

分析 (1))(3,2)代入抛物线y2=mx+1,可得4=3m+1,m=1,(-$\frac{1}{2},\frac{\sqrt{3}}{2}$)代入x2+y2=r2,可得r=1,即可求“黄金抛物线C”的方程;
(2)假设存在这样的直线l,使得QP平分∠AQB,则kAQ=-kBQ,求出A,B的坐标,即可得出结论.

解答 解:(1)(3,2)代入抛物线y2=mx+1,可得4=3m+1,∴m=1,
(-$\frac{1}{2},\frac{\sqrt{3}}{2}$)代入x2+y2=r2,可得r=1.
∴“黄金抛物线C”的方程为抛物线y2=x+1(x≥0)和半圆x2+y2=1(x≤0);
(2)假设存在这样的直线l,使得QP平分∠AQB,则kAQ=-kBQ
设直线AB的方程为y=kx+1,与x2+y2=1联立,可得A(-$\frac{2k}{1+{k}^{2}}$,$\frac{1-{k}^{2}}{1+{k}^{2}}$),
y=kx+1,与y2=x+1联立,可得B($\frac{1-2k}{{k}^{2}}$,$\frac{1-k}{k}$),
∴$\frac{\frac{1-{k}^{2}}{1+{k}^{2}}+1}{-\frac{2k}{1+{k}^{2}}}$=-$\frac{\frac{1-k}{k}+1}{\frac{1-2k}{{k}^{2}}}$,
∴k=-1±$\sqrt{2}$,
∴直线AB的方程为y=(-1±$\sqrt{2}$)x+1.

点评 本题考查抛物线与圆的方程,考查直线与曲线的位置关系,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网