ÌâÄ¿ÄÚÈÝ
15£®¶ÔÓÚ?n¡ÊN*£¬ÈôÊýÁÐ{xn}Âú×ãxn+1-xn£¾1£¬Ôò³ÆÕâ¸öÊýÁÐΪ¡°KÊýÁС±£®£¨¢ñ£©ÒÑÖªÊýÁУº1£¬m+1£¬m2ÊÇ¡°KÊýÁС±£¬ÇóʵÊýmµÄȡֵ·¶Î§£»
£¨¢ò£©ÊÇ·ñ´æÔÚÊ×ÏîΪ-1µÄµÈ²îÊýÁÐ{an}Ϊ¡°KÊýÁС±£¬ÇÒÆäǰnÏîºÍSnÂú×ã${S_n}£¼\frac{1}{2}{n^2}-n£¨n¡Ê{N^*}£©$£¿Èô´æÔÚ£¬Çó³ö{an}µÄͨÏʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£»
£¨¢ó£©ÒÑÖª¸÷Ïî¾ùΪÕýÕûÊýµÄµÈ±ÈÊýÁÐ{an}ÊÇ¡°KÊýÁС±£¬ÊýÁÐ$\left\{{\frac{1}{2}{a_n}}\right\}$²»ÊÇ¡°KÊýÁС±£¬Èô${b_n}=\frac{{{a_{n+1}}}}{n+1}$£¬ÊÔÅжÏÊýÁÐ{bn}ÊÇ·ñΪ¡°KÊýÁС±£¬²¢ËµÃ÷ÀíÓÉ£®
·ÖÎö £¨¢ñ£©ÓÉÌâÒâµÃ£¨m+1£©-1£¾1£¬m2-£¨m+1£©£¾1£¬ÁªÁ¢½â³ö¼´¿ÉµÃ³ö£®
£¨¢ò£©¼ÙÉè´æÔڵȲîÊýÁÐ{an}·ûºÏÒªÇó£¬É蹫²îΪd£¬Ôòd£¾1£¬ÓÉÌâÒ⣬µÃ$-n+\frac{n£¨n-1£©}{2}d£¼\frac{1}{2}{n^2}-n$¶Ôn¡ÊN*¾ù³ÉÁ¢£¬»¯Îª£¨n-1£©d£¼n£®¶Ôn·ÖÀàÌÖÂÛ½â³ö¼´¿ÉµÃ³ö£®
£¨¢ó£©ÉèÊýÁÐ{an}µÄ¹«±ÈΪq£¬Ôò${a_n}={a_1}{q^{n-1}}$£¬ÓÉÌâÒâ¿ÉµÃ£º{an}µÄÿһÏî¾ùΪÕýÕûÊý£¬ÇÒan+1-an=anq-an=an£¨q-1£©£¾1£¾0£¬¿ÉµÃa1£¾0£¬ÇÒq£¾1£®ÓÉan+1-an=q£¨an-an-1£©£¾an-an-1£¬¿ÉµÃÔÚ{an-an-1}ÖУ¬¡°a2-a1¡±Îª×îСÏͬÀí£¬ÔÚ$\{\frac{1}{2}{a_n}-\frac{1}{2}{a_{n-1}}\}$ÖУ¬¡°$\frac{1}{2}{a_2}-\frac{1}{2}{a_1}$¡±Îª×îСÏÔÙÀûÓá°KÊýÁС±£¬¿ÉµÃa1=1£¬q=3»òa1=2£¬q=2£®½ø¶øµÃ³ö£®
½â´ð ½â£º£¨¢ñ£©ÓÉÌâÒâµÃ£¨m+1£©-1£¾1£¬¢Ùm2-£¨m+1£©£¾1£¬¢Ú
½â¢ÙµÃ m£¾1£»
½â¢ÚµÃ m£¼-1»òm£¾2£®
ËùÒÔm£¾2£¬¹ÊʵÊýmµÄȡֵ·¶Î§ÊÇm£¾2£®
£¨¢ò£©¼ÙÉè´æÔڵȲîÊýÁÐ{an}·ûºÏÒªÇó£¬É蹫²îΪd£¬Ôòd£¾1£¬
ÓÉ a1=-1£¬µÃ ${S_n}=-n+\frac{n£¨n-1£©}{2}d$£¬£®
ÓÉÌâÒ⣬µÃ$-n+\frac{n£¨n-1£©}{2}d£¼\frac{1}{2}{n^2}-n$¶Ôn¡ÊN*¾ù³ÉÁ¢£¬
¼´£¨n-1£©d£¼n£®
¢Ùµ±n=1ʱ£¬d¡ÊR£»
¢Úµ±n£¾1ʱ£¬$d£¼\frac{n}{n-1}$£¬
ÒòΪ$\frac{n}{n-1}=1+\frac{1}{n-1}£¾1$£¬
ËùÒÔd¡Ü1£¬Óëd£¾1ì¶Ü£¬
¹ÊÕâÑùµÄµÈ²îÊýÁÐ{an}²»´æÔÚ£®
£¨¢ó£©ÉèÊýÁÐ{an}µÄ¹«±ÈΪq£¬Ôò${a_n}={a_1}{q^{n-1}}$£¬
ÒòΪ{an}µÄÿһÏî¾ùΪÕýÕûÊý£¬ÇÒan+1-an=anq-an=an£¨q-1£©£¾1£¾0£¬
ËùÒÔa1£¾0£¬ÇÒq£¾1£®
ÒòΪan+1-an=q£¨an-an-1£©£¾an-an-1£¬
ËùÒÔÔÚ{an-an-1}ÖУ¬¡°a2-a1¡±Îª×îСÏ
ͬÀí£¬ÔÚ$\{\frac{1}{2}{a_n}-\frac{1}{2}{a_{n-1}}\}$ÖУ¬¡°$\frac{1}{2}{a_2}-\frac{1}{2}{a_1}$¡±Îª×îСÏ
ÓÉ{an}Ϊ¡°KÊýÁС±£¬Ö»Ðèa2-a1£¾1£¬¼´ a1£¨q-1£©£¾1£¬
ÓÖÒòΪ$\{\frac{1}{2}{a_n}\}$²»ÊÇ¡°KÊýÁС±£¬ÇÒ¡°$\frac{1}{2}{a_2}-\frac{1}{2}{a_1}$¡±Îª×îСÏËùÒÔ$\frac{1}{2}{a_2}-\frac{1}{2}{a_1}¡Ü1$£¬¼´ a1£¨q-1£©¡Ü2£¬
ÓÉÊýÁÐ{an}µÄÿһÏî¾ùΪÕýÕûÊý£¬¿ÉµÃ a1£¨q-1£©=2£¬
ËùÒÔa1=1£¬q=3»òa1=2£¬q=2£®
¢Ùµ±a1=1£¬q=3ʱ£¬${a_n}={3^{n-1}}$£¬Ôò${b_n}=\frac{3^n}{n+1}$£¬
Áî${c_n}={b_{n+1}}-{b_n}£¨n¡Ê{N^*}£©$£¬Ôò${c_n}=\frac{{{3^{n+1}}}}{n+2}-\frac{3^n}{n+1}={3^n}•\frac{2n+1}{£¨n+1£©£¨n+2£©}$£¬
ÓÖ${3^{n+1}}•\frac{2n+3}{£¨n+2£©£¨n+3£©}-{3^n}•\frac{2n+1}{£¨n+1£©£¨n+2£©}$=$\frac{3^n}{n+2}•\frac{{4{n^2}+8n+6}}{£¨n+1£©£¨n+3£©}£¾0$£¬
ËùÒÔ{cn}ΪµÝÔöÊýÁУ¬¼´ cn£¾cn-1£¾cn-2£¾¡£¾c1£¬
ËùÒÔbn+1-bn£¾bn-bn-1£¾bn-1-bn-2£¾¡£¾b2-b1£®
ÒòΪ${b_2}-{b_1}=3-\frac{3}{2}=\frac{3}{2}£¾1$£¬
ËùÒÔ¶ÔÈÎÒâµÄn¡ÊN*£¬¶¼ÓÐbn+1-bn£¾1£¬
¼´ÊýÁÐ{cn}Ϊ¡°KÊýÁС±£®
¢Úµ±a1=2£¬q=2ʱ£¬${a_n}={2^n}$£¬Ôò${b_n}=\frac{{{2^{n+1}}}}{n+1}$£®ÒòΪ${b_2}-{b_1}=\frac{2}{3}¡Ü1$£¬
ËùÒÔÊýÁÐ{bn}²»ÊÇ¡°KÊýÁС±£®
×ÛÉÏ£ºµ±${a_n}={3^{n-1}}$ʱ£¬ÊýÁÐ{bn}Ϊ¡°KÊýÁС±£¬
µ±${a_n}={2^n}$ʱ£¬ÊýÁÐ{bn}²»ÊÇ¡°KÊýÁС±£®
µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁÐÓëµÈ±ÈÊýÁеÄͨÏʽÓëÇóºÍ¹«Ê½¡¢²»µÈʽµÄ½â·¨¡¢·ÖÀàÌÖÂÛ·½·¨£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| A£® | ³ä·Ö¶ø²»±ØÒªÌõ¼þ | B£® | ±ØÒª¶ø²»³ä·ÖÌõ¼þ | ||
| C£® | ³ä·Ö±ØÒªÌõ¼þ | D£® | ¼È²»³ä·ÖÒ²²»±ØÒªÌõ¼þ |
| A£® | $\frac{¦Ð}{15}$ | B£® | $\frac{¦Ð}{12}$ | C£® | $\frac{¦Ð}{16}$ | D£® | $\frac{¦Ð}{18}$ |