题目内容

8.函数f(x)=ax3+bx+1在x=1处有极大值2,则b-a=4.

分析 由已知得f′(x)=3ax2+b,且$\left\{\begin{array}{l}f′(1)=3a+b=0\\ f(1)=a+b=2\end{array}\right.$,求出a,b,即可得到结果.

解答 解:∵函数f(x)=ax3+bx+1,
∴f′(x)=3ax2+b,
∵f(x)=ax3+bx+1在x=1处有极大值2,
∴$\left\{\begin{array}{l}f′(1)=3a+b=0\\ f(1)=a+b=2\end{array}\right.$,解得a=-1,b=3,
解得b-a=4.
故答案为:4.

点评 本题重点考查利用导数研究函数的性质,利用函数的性质解决不等式、方程问题.重点考查学生的代数推理论证能力,解题时要认真审题,注意导数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网