ÌâÄ¿ÄÚÈÝ
12£®Ö±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔµãOΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È=1£®Ö±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£®£¨1£©Çó|AB|µÄ³¤£»
£¨2£©ÈôPµãµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬ÇóABÖеãMµ½PµÄ¾àÀ룮
·ÖÎö £¨1£©¸ù¾Ýx=¦Ñcos¦È£¬y=¦Ñsin¦ÈÇó³öÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì£¬´Ó¶øÇó³öABµÄ³¤£¬£¨2£©½«P´øÈëÖ±Ïßl£¬Çó³öPMµÄ³¤¼´¿É£®
½â´ð ½â£º£¨1£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È=1£¬
¡à¦Ñ2£¨cos2¦È-sin2¦È£©=1£¬
¼´x2-y2=1£¬
¶øÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
´øÈëx2-y2=1£¬
µÃ£ºt2-2t-4=0£¬
ÉèA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðÊÇt1£¬t2£¬
Ôòt1+t2=2£¬t1t2=-4£¬
Ôò|AB|=|t1-t2|=$\sqrt{{{£¨t}_{1}{+t}_{2}£©}^{2}-{{4t}_{1}t}_{2}}$=2$\sqrt{5}$£»
£¨2£©PµãµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬Ö±½Ç×ø±êÊÇ£¨0£¬1£©£¬
P£¨0£¬1£©ÔÚÖ±ÏßlÉÏ£¬ABµÄÖеãM¶ÔÓ¦µÄ²ÎÊýΪ£º
$\frac{{{t}_{1}+t}_{2}}{2}$=1£¬¡à|PM|=1£®
µãÆÀ ±¾Ì⿼²éÁËÖ±Ïß·½³ÌÒÔ¼°ÒÔ¼°¼«×ø±ê·½³Ì£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬ÊÇÒ»µÀÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
2£®
ÈçͼF1¡¢F2ÊÇÍÖÔ²C1£º$\frac{{x}^{2}}{4}$+y2=1ÓëË«ÇúÏßC2µÄ¹«¹²½¹µã£¬A¡¢B·Ö±ðÊÇC1¡¢C2ÔÚµÚ¶þ¡¢ËÄÏóÏ޵Ĺ«¹²µã£¬ÈôËıßÐÎAF1BF2Ϊ¾ØÐΣ¬ÔòC2µÄÀëÐÄÂÊÊÇ£¨¡¡¡¡£©
| A£® | $\frac{1}{2}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{\sqrt{3}}{2}$ | D£® | $\frac{\sqrt{6}}{2}$ |
3£®ÒÑÖªº¯Êýf£¨x£©=x3+x-1£¬ÔòÔÚÏÂÁÐÇø¼äÖУ¬f£¨x£©Ò»¶¨ÓÐÁãµãµÄÊÇ£¨¡¡¡¡£©
| A£® | £¨-1£¬0£© | B£® | £¨0£¬1£© | C£® | £¨-2£¬-1£© | D£® | £¨1£¬2£© |