ÌâÄ¿ÄÚÈÝ

12£®Ö±½Ç×ø±êϵxoyÖУ¬ÒÑÖªÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬xÖá·Ç¸º°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È=1£®Ö±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£®
£¨1£©Çó|AB|µÄ³¤£»     
£¨2£©ÈôPµãµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬ÇóABÖеãMµ½PµÄ¾àÀ룮

·ÖÎö £¨1£©¸ù¾Ýx=¦Ñcos¦È£¬y=¦Ñsin¦ÈÇó³öÖ±ÏßµÄÖ±½Ç×ø±ê·½³Ì£¬´Ó¶øÇó³öABµÄ³¤£¬£¨2£©½«P´øÈëÖ±Ïßl£¬Çó³öPMµÄ³¤¼´¿É£®

½â´ð ½â£º£¨1£©¡ßÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ2cos2¦È=1£¬
¡à¦Ñ2£¨cos2¦È-sin2¦È£©=1£¬
¼´x2-y2=1£¬
¶øÖ±ÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=\frac{\sqrt{3}}{2}t}\\{y=1+\frac{1}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬
´øÈëx2-y2=1£¬
µÃ£ºt2-2t-4=0£¬
ÉèA¡¢B¶ÔÓ¦µÄ²ÎÊý·Ö±ðÊÇt1£¬t2£¬
Ôòt1+t2=2£¬t1t2=-4£¬
Ôò|AB|=|t1-t2|=$\sqrt{{{£¨t}_{1}{+t}_{2}£©}^{2}-{{4t}_{1}t}_{2}}$=2$\sqrt{5}$£»
£¨2£©PµãµÄ¼«×ø±êΪ£¨1£¬$\frac{¦Ð}{2}$£©£¬Ö±½Ç×ø±êÊÇ£¨0£¬1£©£¬
P£¨0£¬1£©ÔÚÖ±ÏßlÉÏ£¬ABµÄÖеãM¶ÔÓ¦µÄ²ÎÊýΪ£º
$\frac{{{t}_{1}+t}_{2}}{2}$=1£¬¡à|PM|=1£®

µãÆÀ ±¾Ì⿼²éÁËÖ±Ïß·½³ÌÒÔ¼°ÒÔ¼°¼«×ø±ê·½³Ì£¬¿¼²éµãµ½Ö±ÏߵľàÀ빫ʽ£¬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø