题目内容

已知正三角形内切圆的半径r与它的高h的关系是:r=
1
3
h,把这个结论推广到空间正四面体,则正四面体内切球的半径r与正四面体高h的关系是
 
考点:类比推理
专题:空间位置关系与距离
分析:连接球心与正四面体的四个顶点.把正四面体分成四个高为r的三棱锥,正四面体的体积,就是四个三棱锥的体积的和,求解即可.
解答: 解:球心到正四面体一个面的距离即球的半径r,连接球心与正四面体的四个顶点.
把正四面体分成四个高为r的三棱锥,所以4×
1
3
S×r=
1
3
×S×h,
所以r=
1
4
h
(其中S为正四面体一个面的面积,h为正四面体的高)
故答案为:r=
1
4
h
点评:本题考查类比推理,解题的关键是明确类比的方法,明确正三角形面积、正四面体体积的计算方法.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网