题目内容
1.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,其中a>0,当该区域的面积为4时,z=2x-y的最大值是( )| A. | 6 | B. | 0 | C. | 2 | D. | 2$\sqrt{2}$ |
分析 由约束条件作出可行域,求出使可行域面积为4的a值,化目标函数为直线方程的斜截式,数形结合可得最优解,求出最优解的坐标,代入目标函数得答案.
解答 解:由$\left\{\begin{array}{l}{{y}^{2}-{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$作出可行域如图,![]()
由图可得A(a,-a),B(a,a),
由S△OAB=$\frac{1}{2}$•2a•a=4,得a=2.
∴A(2,-2),
化目标函数z=2x-y为y=2x-z,
∴当y=2x-z过A点时,z最大,等于2×2-(-2)=6.
故选:A.
点评 本题考查了简单的线性规划,考查了数形结合的解题思想方法,是中档题.
练习册系列答案
相关题目
11.设定义在R上的函数f(x)满足f(x)•f(x+2)=13,若f(1)=2,则f(2015)=( )
| A. | $\frac{13}{3}$ | B. | $\frac{13}{2}$ | C. | 13 | D. | $\frac{39}{2}$ |
9.已知集合A={x|$\frac{x-3}{x-2}$>0},B={x||x-1|≤2},则A∩B=( )
| A. | (-∞,-1)∪[2,3) | B. | [-1,2) | C. | (-∞,-1)∪[2,3)∪(3,+∞) | D. | (-∞,-1)∪(3,+∞) |
6.在直角坐标系中,若不等式组$\left\{\begin{array}{l}{y≥0}\\{y≤x}\\{y≤k(x-1)-1}\end{array}\right.$表示一个三角形区域,则实数k的取值范围是( )
| A. | (-∞,-1) | B. | (-1,2) | C. | (-∞,-1)∪(2,+∞) | D. | (2,+∞) |
13.设正项等比数列{an}满足:an•an+1=4n+6,则a100=( )
| A. | 2211 | B. | ($\sqrt{2}$)211 | C. | 4211 | D. | 2105 |
10.在${(\frac{x}{2}-\frac{1}{{\root{3}{x}}})^n}$的二项展开式中,只有第5项的二项式系数最大,则此展开式中各项系数绝对值之和为( )
| A. | ${(\frac{1}{2})^9}$ | B. | ${(\frac{3}{2})^9}$ | C. | ${(\frac{1}{2})^8}$ | D. | ${(\frac{3}{2})^8}$ |
11.$\frac{\overline{z}}{1+i}$=2+i,则z=( )
| A. | 1-3i | B. | 1+3i | C. | -1-3i | D. | -1+3i |