题目内容
10.在${(\frac{x}{2}-\frac{1}{{\root{3}{x}}})^n}$的二项展开式中,只有第5项的二项式系数最大,则此展开式中各项系数绝对值之和为( )| A. | ${(\frac{1}{2})^9}$ | B. | ${(\frac{3}{2})^9}$ | C. | ${(\frac{1}{2})^8}$ | D. | ${(\frac{3}{2})^8}$ |
分析 根据二项展开式中只有第5项的二项式系数最大知n=8;再求展开式中各项系数绝对值之和.
解答 解:在${(\frac{x}{2}-\frac{1}{{\root{3}{x}}})^n}$的二项展开式中,只有第5项的二项式系数最大,
∴n=8;
∴此展开式中各项系数绝对值之和为${(\frac{1}{2}+1)}^{8}$=${(\frac{3}{2})}^{8}$.
故选:D.
点评 本题考查了二项展开式中二项式系数与所有项系数的绝对值计算问题,是基础题.
练习册系列答案
相关题目
1.已知P(x,y)为区域$\left\{\begin{array}{l}{{y}^{2}-{x}^{2}≤0}\\{0≤x≤a}\end{array}\right.$内的任意一点,其中a>0,当该区域的面积为4时,z=2x-y的最大值是( )
| A. | 6 | B. | 0 | C. | 2 | D. | 2$\sqrt{2}$ |
18.设集合P={(x,y)|y=x2},Q={(x,y)|y=2x+3},则P∩Q=( )
| A. | {-1,3} | B. | {(-1,1),(3,9)} | C. | {1,-3} | D. | ∅ |
15.已知函数$f(x)=\left\{\begin{array}{l}(2-a)x+1,x<1\\{a^x},x≥1\end{array}\right.$是(-∞,+∞)上的增函数,那么a的取值范围是( )
| A. | (1,2) | B. | (1,$\frac{3}{2}$] | C. | [$\frac{3}{2}$,2) | D. | ($\frac{3}{2}$,2) |
19.当0<x<$\frac{1}{2}$时,4x<logax,则a的取值范围是( )
| A. | (0,$\frac{\sqrt{2}}{2}$] | B. | ($\frac{\sqrt{2}}{2}$,1) | C. | [$\frac{\sqrt{2}}{2}$,1) | D. | (1,$\sqrt{2}$) |