题目内容
3.若函数f(x)满足:存在非零常数a,使f(x)=-f(2a-x),则称f(x)为“准奇函数”,给出下列函数:①f(x)=x2;②f(x)=(x-1)3;③f(x)=ex-1;④f(x)=cosx.则以上函数中是“准奇函数”的序号是②④.分析 根据准奇函数的定义,先求-f(2a-x),并判断它能否等于f(x),并根据-f(2a-x)=f(x)求出a,若a≠0便得到该函数是准奇函数,若a=0便不是.按照这个方法即可判断每个选项的函数是否为准奇函数.
解答 解:A.-f(2a-x)=-(2a-x)2≤0,f(x)=x2≥0,∴f(x)=x2不是准奇函数;
B.由-f(2a-x)=-(2a-x-1)3=(x-2a+1)3=(x-1)3得,-2a+1=-1,
∴a=1,即存在a=1,使f(x)=-f(2a-x);
∴该函数为准奇函数;
C.-f(2a-x)=-e2a-x-1<0,而f(x)=ex-1>0,∴该函数不是准奇函数;
D.存在非零常数$\frac{π}{2}$,使-f(2×$\frac{π}{2}$-x)=-cos(2×$\frac{π}{2}$-x)=cosx=f(x),
∴该函数是准奇函数.
故答案为:②④.
点评 考查对新概念-准奇函数的理解程度,以及根据准奇函数的定义判断一个函数是否为准奇函数的过程.
练习册系列答案
相关题目
11.已知f(x)=$\frac{(a+1)x+a}{x+1}$,且f(x-1)的图象的对称中心是(0,3),则f′(2)的值为( )
| A. | -$\frac{1}{9}$ | B. | $\frac{1}{9}$ | C. | -$\frac{1}{4}$ | D. | $\frac{1}{4}$ |
18.已知点(1,3)和(-4,-2)在直线2x-y+m=0的两侧,则m的取值范围是( )
| A. | m<1或m>6 | B. | m=1或m=6 | C. | 1<m<6 | D. | 1≤m≤6 |
8.在等差数列{an}中,a1=21,a7=15,则公差d=( )
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
15.复数$\frac{2i}{1-i}$=( )
| A. | 1+i | B. | 1-i | C. | -1+i | D. | -1-i |
13.将函数f(x)=sin(4x+$\frac{π}{6}$)图象上所有点的横坐标伸长到原来的2倍,再向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是直线( )
| A. | x=$\frac{π}{2}$ | B. | x=$\frac{π}{6}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{2π}{3}$ |