题目内容
13.将函数f(x)=sin(4x+$\frac{π}{6}$)图象上所有点的横坐标伸长到原来的2倍,再向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)的图象,则y=g(x)图象的一条对称轴是直线( )| A. | x=$\frac{π}{2}$ | B. | x=$\frac{π}{6}$ | C. | x=$\frac{π}{3}$ | D. | x=$\frac{2π}{3}$ |
分析 由题意根据函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,得出结论.
解答 解:将函数f(x)=sin(4x+$\frac{π}{6}$)图象上所有点的横坐标伸长到原来的2倍,可得y=sin(2x+$\frac{π}{6}$)的图象,
再向右平移$\frac{π}{6}$个单位长度,得到函数y=g(x)=sin[2(x-$\frac{π}{6}$)+$\frac{π}{6}$]=sin(2x-$\frac{π}{6}$)的图象.
令x=$\frac{π}{3}$,求得g(x)=1,为函数g(x)的最大值,
则y=g(x)图象的一条对称轴是直线x=$\frac{π}{3}$,
故选:C.
点评 本题主要考查函数y=Asin(ωx+φ)的图象变换规律,正弦函数的图象的对称性,属于基础题.
练习册系列答案
相关题目
1.已知点(x,y)满足不等式组$\left\{\begin{array}{l}{x-2≤0}\\{y-1≤0}\\{x+2y-2≥0}\end{array}\right.$,则z=x-y的取值范围是( )
| A. | [-2,-1] | B. | [-2,1] | C. | [-1,2] | D. | [1,2] |
18.命题p:?x∈(-∞,0),2x>3x,则( )
| A. | p是假命题,¬p:?x0∈(-∞,0),2${\;}^{{x}_{0}}$≤3${\;}^{{x}_{0}}$ | |
| B. | p是假命题¬p:?x∈(-∞,0),2x>3x | |
| C. | p是真命题¬p:?x0∈(-∞,0),2${\;}^{{x}_{0}}$≤3${\;}^{{x}_{0}}$ | |
| D. | p是真命题¬p:?x∈(-∞,0),2x>3x |