题目内容

14.如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,且底面ABCD为正方形,E是PA的中点.
(Ⅰ)求证:PC∥平面BDE;
(Ⅱ)求证:平面PAC⊥平面BDE.

分析 (Ⅰ)连接AC交BD于点O,连接OE,则PC∥OE,由此能证明PC∥平面BDE.
(Ⅱ)推导出PA⊥BD,BD⊥AC,从而BD⊥平面PAC,由此能证明平面PAC⊥平面BDE.

解答 证明:(Ⅰ)如图所示,连接AC交BD于点O,连接OE…(2分)
∵O是AC的中点,E是PA的中点
∴PC∥OE…(3分)
∵OE?平面BDE,PC?平面BDE
∴PC∥平面BDE…(5分)
(Ⅱ)∵PA⊥底面ABCD
∴PA⊥BD
∵ABCD是正方形
∴BD⊥AC
又AC∩PA=A
∴BD⊥平面PAC…(9分)
又BD?平面BDE
∴平面PAC⊥平面BDE…(10分)

点评 本题考查线面平行、面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网