题目内容
1.已知α、β∈(0,π),且tanα、tanβ是方程x2-5x+6=0的两根.①求α+β的值.
②求cos(α-β)的值.
分析 由条件利用韦达定理,两角和差的正切、余弦公式,求得要求式子的值.
解答 解:①由根与系数的关系得:tanα+tanβ=5,tanα•tanβ=6,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanα•tanβ}$=-1.
$\begin{array}{l}又tanα>0,tanβ>0,且α,β∈(0,π)$,∴$α,β∈(0,\frac{π}{2}),α+β∈(0,π),\\ 所以α+β=\frac{3π}{4}.\end{array}$∴α+β=$\frac{3π}{4}$.
②由(1)得$cos(α+β)=cosαcosβ-sinαsinβ=-\frac{{\sqrt{2}}}{2}…(3)$,再结合sinαsinβ=6cosαcosβ(4)),
联立(3)、(4)可得 sinαsinβ=$\frac{3\sqrt{2}}{5}$,cosαcosβ=$\frac{\sqrt{2}}{10}$,
∴$cos(α-β)=cosαcosβ+sinαsinβ=\frac{{7\sqrt{2}}}{10}$.
点评 本题主要考查韦达定理,两角和差的正切、余弦公式,属于基础题.
练习册系列答案
相关题目
6.已知O,N,P在△ABC所在平面内,且|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=|$\overrightarrow{OC}$|,$\overrightarrow{NA}$+$\overrightarrow{NB}$+$\overrightarrow{NC}$=$\overrightarrow{0}$,$\overrightarrow{PA}$•$\overrightarrow{PB}$=$\overrightarrow{PB}$•$\overrightarrow{PC}$=$\overrightarrow{PC}$•$\overrightarrow{PA}$,则点O,N,P依次是△ABC的( )
| A. | 重心,外心,垂心 | B. | 重心,外心,内心 | C. | 外心,重心,垂心 | D. | 外心,重心,内心 |
6.设函数f(x)是定义在区间(-∞,0)上的可导函数,其导函数为f′(x),且满足xf′(x)+f(x)<x,则不等式(x+2016)f(x+2016)+2f(-2)>0的解集为( )
| A. | (x|-2014<x<0} | B. | (x|x<-2018} | C. | (x|x>-2016} | D. | (x|-2016<x<-2014} |
13.已知p:A={x||x-a|<4},q:B={x|(x-2)(3-x)>0},若¬p是¬q的充分条件,则实数a的取值范围为( )
| A. | -1<a<6 | B. | a≤-1或a≥6 | C. | a<-1或a>6 | D. | -1≤a≤6 |