题目内容

12.已知α是第三象限的角,cos2α=-$\frac{4}{5}$,则tan(2α-$\frac{π}{4}$)=-$\frac{1}{7}$.

分析 由α为第三象限的角,判断出2α可能的范围,再结合又cos2α=-$\frac{4}{5}$<0确定出2α在第二象限,利用同角三角函数关系求出其正弦,再由两角和的正切公式展开代入求值.

解答 解:∵α为第三象限的角,
∴2α∈(2(2k+1)π,π+2(2k+1)π)(k∈Z),
又cos2α=-$\frac{4}{5}$<0,
所以2α∈($\frac{π}{2}$+2(2k+1)π,π+2(2k+1)π)(k∈Z),
∴sin2α=-$\sqrt{1-co{s}^{2}2α}$=-$\frac{3}{5}$,tan2α=$\frac{sin2α}{cos2α}$=$\frac{3}{4}$,
∴tan(2α-$\frac{π}{4}$)=$\frac{tan2α-tan\frac{π}{4}}{1+tan2αtan\frac{π}{4}}$=$\frac{\frac{3}{4}-1}{1+\frac{3}{4}×1}$=-$\frac{1}{7}$.
故答案为:-$\frac{1}{7}$.

点评 本小题主要考查三角函数值符号的判断、同角三角函数关系、和角的正切公式,同时考查了基本运算能力及等价变换的解题技能.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网