题目内容
已知直线
x+y+m=0与圆x2+y2=9交于A,B两点,则与向量
+
(O为坐标原点)共线的一个向量为( )
| 3 |
| OA |
| OB |
A、(1,-
| ||||
B、(1,
| ||||
C、(1,
| ||||
D、(1,-
|
考点:向量的加法及其几何意义,平行向量与共线向量
专题:平面向量及应用
分析:本题可通过设A,B两点坐标,联立方程求出向量坐标,再利用共线向量坐标成比例得出答案
解答:
解:设A(x1,y1),B(x2,y2),则
+
=(x1+x2,y1+y2)
由直线方程得y=-
x-m,代入圆的方程得:4x2+2
mx+m2-9=0
则x1,x2为方程两根,x1+x2=-
m,
代入y=-
x-m得y1+y2=-
(x1+x2)-2m=-
m
则
+
=(-
m,-
m)
设所求向量为(x,y),则
=
=
故选:B
| OA |
| OB |
由直线方程得y=-
| 3 |
| 3 |
则x1,x2为方程两根,x1+x2=-
| ||
| 2 |
代入y=-
| 3 |
| 3 |
| 1 |
| 2 |
则
| OA |
| OB |
| ||
| 2 |
| 1 |
| 2 |
设所求向量为(x,y),则
| y |
| x |
-
| ||||
-
|
| ||
| 3 |
故选:B
点评:本题考查向量共线的充要条件.
练习册系列答案
相关题目
已知[x)表示大于x的最小整数,例如[3)=4,[-1.2)=-1.下列命题:
①函数f(x)=[x)-x的值域是(0,1];
②若{an}是等差数列,则{[an)}也是等差数列;
③若{an}是等比数列,则{[an)}也是等比数列;
④若x∈(1,4),则方程[x)-x=
有3个根.
正确的是( )
①函数f(x)=[x)-x的值域是(0,1];
②若{an}是等差数列,则{[an)}也是等差数列;
③若{an}是等比数列,则{[an)}也是等比数列;
④若x∈(1,4),则方程[x)-x=
| 1 |
| 2 |
正确的是( )
| A、②④ | B、③④ | C、①③ | D、①④ |
已知集合A={1,2,3,4},B={2,4,6},则A∩B的元素个数是( )
| A、0个 | B、1个 | C、2个 | D、3个 |
若抛物线C:y2=2px(p>0)上一点到焦点和x轴的距离分别为5和3,则此抛物线的方程为( )
| A、y2=2x | ||
B、y2=(
| ||
| C、y2=2x或y2=18x | ||
D、y2=3x或y2=(
|
已知sinα+cosα=
,则sin2(
-α)=( )
| 1 |
| 3 |
| π |
| 4 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|