ÌâÄ¿ÄÚÈÝ
| QM |
| QP |
£¨1£©ÇóÇúÏßCµÄ·½³Ì£¬²¢Ö¸³öÇúÏßCΪºÎÖÖÔ²×¶ÇúÏߣ»
£¨2£©ÈôS£¨m£¬n£©ÎªÔ²OÉÏÈÎÒâÒ»µã£¬ÇóÓëÖ±Ïßmx+ny=1ºãÏàÇеĶ¨Ô²µÄ·½³Ì£»
£¨3£©ÈôS£¨m£¬n£©ÎªÇúÏßCÉϵÄÈÎÒâÒ»µã£¬ÇÒA£¨1£¬
| 3 |
| 2 |
¿¼µã£º¹ì¼£·½³Ì,Ö±ÏßÓëÔ²µÄλÖùØÏµ
רÌ⣺Բ׶ÇúÏßÖеÄ×îÖµÓ뷶ΧÎÊÌâ
·ÖÎö£º£¨1£©ÉèµãM£¨x£¬y£©£¬P£¨x0£¬y0£©£¬ÔòQ£¨x0£¬0£©£¬ÓÉa
=b
£¬£¨a£¾b£¾0£©£¬µÃa£¨x-x0£¬y£©=b£¨0£¬y0£©£¬ÓÖP£¨x0£¬y0£©ÊÇÔ²ÉÏÈÎÒâÒ»µã£¬´Ó¶øx02+y02=a2£¬ÓÉ´ËÄÜÇó³öÇúÏßCµÄ·½³Ì£®
£¨2£©ÓɶԳÆÐÔ£¬ÉèËùÇó¶¨Ô²·½³ÌΪx2+y2=r2£¬r£¾0£¬ÓÉÔ²ÐÄOµ½Ö±ÏßlµÄ¾àÀëµÃr=
£¬ÓÉ´ËÄÜÇó³öÓëÖ±Ïßmx+ny=1ºãÏàÇеĶ¨Ô²µÄ·½³Ì£®
£¨3£©ÓÉÒÑÖªÌõ¼þÄÜд³öÓëÖ±Ïßmx+ny=1ºãÏàÇе͍ÇúÏߵķ½³Ì£®
| QM |
| QP |
£¨2£©ÓɶԳÆÐÔ£¬ÉèËùÇó¶¨Ô²·½³ÌΪx2+y2=r2£¬r£¾0£¬ÓÉÔ²ÐÄOµ½Ö±ÏßlµÄ¾àÀëµÃr=
| 1 | ||
|
£¨3£©ÓÉÒÑÖªÌõ¼þÄÜд³öÓëÖ±Ïßmx+ny=1ºãÏàÇе͍ÇúÏߵķ½³Ì£®
½â´ð£º
½â£º£¨1£©ÉèµãM£¨x£¬y£©£¬P£¨x0£¬y0£©£¬ÔòQ£¨x0£¬0£©£¬
ÓÉa
=b
£¬£¨a£¾b£¾0£©£¬µÃa£¨x-x0£¬y£©=b£¨0£¬y0£©£¬
¡à
£¬
ÓÖP£¨x0£¬y0£©ÊÇÔ²ÉÏÈÎÒâÒ»µã£¬
¡àx02+y02=a2£¬
¡àx2+£¨
y£©2=a2£¬ÕûÀí£¬µÃ£º
+
=1£¬£¨a£¾b£¾0£©£¬
¡àÇúÏßCµÄ·½³ÌΪ
+
=1£¬£¨a£¾b£¾0£©£®
¸ÃÇúÏßÊÇÖÐÐÄÔÚԵ㣬½¹µãÔÚxÖáÉÏ£¬³¤Ö᳤Ϊ2a£¬¶ÌÖ᳤Ϊ2bµÄÍÖÔ²£®
£¨2£©ÓɶԳÆÐÔ£¬ÉèËùÇó¶¨Ô²·½³ÌΪx2+y2=r2£¬r£¾0£¬
ÒÀÌâÒ⣬µÃÔ²ÐÄOµ½Ö±ÏßlµÄ¾àÀëd=
£¬
¡àr=
£¬
ÓÖ¡ßS£¨m£¬n£©ÊÇÔ²x2+y2=a2ÉÏÈÎÒâÒ»µã£¬
¡àm2+n2=a2£¬¡àr=
£¬
¡àÓëÖ±Ïßmx+ny=1ºãÏàÇеĶ¨Ô²µÄ·½³ÌΪx2+y2=
£®
£¨3£©4x2+3y2=1£®
ÓÉa
| QM |
| QP |
¡à
|
ÓÖP£¨x0£¬y0£©ÊÇÔ²ÉÏÈÎÒâÒ»µã£¬
¡àx02+y02=a2£¬
¡àx2+£¨
| a |
| b |
| x2 |
| a2 |
| y2 |
| b2 |
¡àÇúÏßCµÄ·½³ÌΪ
| x2 |
| a2 |
| y2 |
| b2 |
¸ÃÇúÏßÊÇÖÐÐÄÔÚԵ㣬½¹µãÔÚxÖáÉÏ£¬³¤Ö᳤Ϊ2a£¬¶ÌÖ᳤Ϊ2bµÄÍÖÔ²£®
£¨2£©ÓɶԳÆÐÔ£¬ÉèËùÇó¶¨Ô²·½³ÌΪx2+y2=r2£¬r£¾0£¬
ÒÀÌâÒ⣬µÃÔ²ÐÄOµ½Ö±ÏßlµÄ¾àÀëd=
| 1 | ||
|
¡àr=
| 1 | ||
|
ÓÖ¡ßS£¨m£¬n£©ÊÇÔ²x2+y2=a2ÉÏÈÎÒâÒ»µã£¬
¡àm2+n2=a2£¬¡àr=
| 1 |
| a |
¡àÓëÖ±Ïßmx+ny=1ºãÏàÇеĶ¨Ô²µÄ·½³ÌΪx2+y2=
| 1 |
| a2 |
£¨3£©4x2+3y2=1£®
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éÆ½ÃæÏòÁ¿¡¢Ö±ÏßÓëÔ²¡¢ÍÖÔ²µÈ»ù´¡ÖªÊ¶£¬¿¼²éÍÆÀíÂÛÖ¤ÄÜÁ¦¡¢ÔËËãÇó½âÄÜÁ¦¡¢´´ÐÂÒâʶ£»¿¼²éº¯ÊýÓë·½³Ì˼Ïë¡¢ÊýÐνáºÏ˼Ïë¡¢»¯¹éÓëת»¯Ë¼Ïë¡¢ÌØÊâÓëÒ»°ã˼Ï룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿