题目内容
4.已知f(x)是定义在R上的不恒等于0的偶函数,且对于任意实数x都有xf(x+1)=(x+1)f(x),则$f(\frac{9}{2})$的值为( )| A. | 1 | B. | 0 | C. | $\frac{1}{2}$ | D. | $\frac{9}{2}$ |
分析 从xf(x+1)=(1+x)f(x)结构来看,要用递推的方法,先用赋值法结合函数奇偶性的性质,再由依此求解.
解答 解:由xf(x+1)=(1+x)f(x),
令x=-$\frac{1}{2}$,得-$\frac{1}{2}$f($\frac{1}{2}$)=$\frac{1}{2}$f(-$\frac{1}{2}$),
即-f($\frac{1}{2}$)=f(-$\frac{1}{2}$),
又∵f(x)为偶函数,
∴f($\frac{1}{2}$)=0,
则$\frac{1}{2}$f($\frac{3}{2}$)=$\frac{3}{2}$f($\frac{1}{2}$),
所以f($\frac{3}{2}$)=0,以此类推,可得f($\frac{1}{2}$)=f($\frac{3}{2}$)=…=f($\frac{9}{2}$)=0,
故选:B.
点评 本题考查函数值的计算,以及函数奇偶性的性质的应用,熟练掌握函数奇偶性的性质是解答的关键.
练习册系列答案
相关题目
19.已知a,b为直线,α为平面,且a?α,则以下命题正确的是( )
| A. | 若b∥a,则b∥α | B. | 若b⊥α,则b⊥a | C. | 若b∥α,则b∥a | D. | 若b⊥a,则b⊥α |
16.不等式组$\left\{\begin{array}{l}{4x-y≥0}\\{3x-2y-6≤0}\\{2x+y-5≤0}\end{array}\right.$所表示的平面区域为Ω,则Ω上的点到点M(2,-6)的最短距离为( )
| A. | 1 | B. | 2 | C. | $\frac{12\sqrt{13}}{13}$ | D. | $\frac{28\sqrt{13}}{13}$ |
9.根据二分法原理求解方程x2-4=0得到的框图可称为( )
| A. | 知识结构图 | B. | 组织结构图 | C. | 工序流程图 | D. | 程序流程图 |
14.已知命题p:?x∈R,sin2x≤1,则( )
| A. | ¬p:?x0∈R,sin2x0≥1 | B. | ¬p:?x∈R,sin2x≥1 | ||
| C. | ¬p:?x0∈R,sin2x0>1 | D. | ¬p:?x∈R,sin2x>1 |