题目内容
曲线在点处的切线方程为________.
;
已知函数,,设.
(1)若在处取得极值,且,求函数h(x)的单调区间;
(2)若时函数h(x)有两个不同的零点x1,x2.
①求b的取值范围;②求证:.
已知圆C过点(1,0),且圆心在x轴的正半轴上.直线l:y=x-1被圆C所截得的弦长为2,则过圆心且与直线l垂直的直线的方程为 .
某学生在校举行的环保知识大奖赛中,答对每道题的概率都是, 答错每道题的概率都是,答对一道题积5分,答错一道题积-5分,答完n道题后的总积分记为.
(1)答完2道题后,求同时满足S1=5且的概率;
(2)答完5道题后,设,求的分布列及其数学期望.
若将函数y=sin(ω>0)的图象向左平移个单位长度后,与函数的图象重合,则ω的最小值为_____________.
如图,在四棱锥P-ABCD中,底面ABCD是正方形,
侧棱PD⊥底面ABCD,PD=DC,E是PC的中点.
⑴求证:PA∥平面BDE;
⑵求证:平面BDE⊥平面PBC.
已知极坐标系的极点与直角坐标系的原点重合,极轴与轴的正半轴重合.若直线的极坐标方程为.
(1)把直线的极坐标方程化为直角坐标系方程;
(2)已知为椭圆上一点,求到直线的距离的最小值.
设两个向量和,其中.
若,则的取值范围是 .
函数的值域为集合A,函数的定义域为集合B,则AB = .