题目内容
5.设|a|<1,函数f(x)=ax2+x-a(-1≤x≤1),证明:|f(x)|≤$\frac{5}{4}$.分析 利用绝对值不等式,结合配方法,即可证明结论.
解答 证明:∵|f(x)|=|a(x2-1)+x|≤|a(x2-1)|+|x|≤|x2-1|+|x|=1-x2+|x|=-(|x|-$\frac{1}{2}$)2+$\frac{5}{4}$≤$\frac{5}{4}$,
∴|f(x)|≤$\frac{5}{4}$.
点评 本题考查不等式的证明,考查绝对值不等式的运用,属于中档题.
练习册系列答案
相关题目
15.在区间[0,1]上随机选取两个数x和y,则y>2x的概率为( )
| A. | $\frac{1}{4}$ | B. | $\frac{1}{2}$ | C. | $\frac{3}{4}$ | D. | $\frac{1}{3}$ |
16.在直三棱柱ABC-A1BlC1中,平面α与棱AB,AC,A1C1,A1B1分别交于点E,F,G,H,且直线AA1∥平面α.有下列三个命题:①四边形EFGH是平行四边形;②平面α∥平面BCC1B1;③平面α⊥平面BCFE.其中正确的命题有( )
| A. | ①② | B. | ②③ | C. | ①③ | D. | ①②③ |
13.宿州市日前提出,要提升市民的生活质量,改善民生,促进“中国梦”的实线,为此,某记者在街头随机采访了100名市民,根据他们对“中国梦”实线的信心情况进行统计分析,得到如下分布表:
(Ⅰ)以这100名市民信心指数为样本来估计市民的总体信心指数,若要从全市市民中随机任选3人进行信心跟踪,记ξ表示抽到信心级别为“非常有信心或有信心”市民人数,求ξ的分布列及期望;
(Ⅱ)从这100名市民中,任选两人,记他们的信心指数分别为m、n,求|m-n|≥60的概率.
| 信心级别 | 非常有信心 | 有信心 | 不知道 | 没信心 |
| 信心指数(分数) | 90 | 60 | 30 | 6 |
| 人数(名) | 42 | 38 | 14 | 6 |
(Ⅱ)从这100名市民中,任选两人,记他们的信心指数分别为m、n,求|m-n|≥60的概率.
20.执行如图所示的程序框图,则输出S的值为( )

| A. | 16 | B. | 32 | C. | 64 | D. | 1024 |
10.已知函数$f(x)=\frac{1}{3}m{x^3}+\frac{1}{2}n{x^2}+x+2017$,其中m∈{2,4,6,8},n∈{1,3,5,7},从这些函数中任取不同的两个函数,在它们在(1,f(1))处的切线相互平行的概率是( )
| A. | $\frac{7}{120}$ | B. | $\frac{7}{60}$ | C. | $\frac{7}{30}$ | D. | 以上都不对 |
17.设抛物线x2=4y的焦点为F,过点F作斜率为k(k>0)的直线l与抛物线相交于A、B两点,且点P恰为AB的中点,过点P作x轴的垂线与抛物线交于点M,若|MF|=4,则直线l的方程为( )
| A. | $y=2\sqrt{2}x+1$ | B. | $y=\sqrt{3}x+1$ | C. | $y=\sqrt{2}x+1$ | D. | $y=2\sqrt{3}x+2$ |
14.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )

| A. | 3π | B. | $\frac{10π}{3}$ | C. | $\frac{11π}{3}$ | D. | 4π |