题目内容
14.某几何体的三视图如图所示,其俯视图是由一个半圆与其直径组成的图形,则此几何体的体积是( )| A. | 3π | B. | $\frac{10π}{3}$ | C. | $\frac{11π}{3}$ | D. | 4π |
分析 根据三视图可知几何体是组合体:上面是半个圆锥、下面是半个圆柱,并求出底面圆的半径以及几何体的高,由椎体、柱体的体积公式求出此几何体的体积.
解答 解:根据三视图可知几何体是组合体:上面是半个圆锥、下面是半个圆柱,
且圆锥的底面圆的半径r=2、高是2,圆柱的底面圆的半径r=2、高是1,
所以此几何体的体积V=$\frac{1}{2}×\frac{1}{3}π×4×2+\frac{1}{2}π×4×1$=$\frac{10π}{3}$,
故选B.
点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.
练习册系列答案
相关题目
9.已知A(1,2),B(2,11),若直线y=(m-$\frac{6}{m}$)x+1(m≠0)与线段AB相交,则实数m的取值范围是( )
| A. | [-2,0)∪[3,+∞) | B. | (-∞,-1]∪(0,6] | C. | [-2,-1]∪[3,6] | D. | [-2,0)∪(0,6] |
6.已知函数$f(x)=\left\{\begin{array}{l}-sinx,x>0\\ sinx,x≤0\end{array}\right.$,则下列结论正确的是( )
| A. | f(x)是奇函数 | |
| B. | f(x)是偶函数 | |
| C. | f(x)是周期函数 | |
| D. | f(x)在$[-\frac{π}{2}+2kπ,\frac{π}{2}+2kπ](k∈z)$上为减函数 |