题目内容

若函数f(x)=2sin(ωx+φ)(ω>0,0≤φ≤
π
2
)的部分图象如图所示,其中A,B两点的间距为5,则(  )
A、ω=
π
3
,φ=
π
3
B、ω=
1
5
,φ=
π
3
C、ω=
π
3
,φ=
π
6
D、ω=
π
3
,φ=
π
6
考点:由y=Asin(ωx+φ)的部分图象确定其解析式
专题:计算题,三角函数的图像与性质
分析:由函数图象经过点(0,1),代入解析式得sinφ=
1
2
,解出φ=
π
6
.根据A、B两点之间的距离为5,由勾股定理解出横坐标的差为3,得函数的周期T=6,由此算出ω=
π
3
解答: 解:∵函数图象经过点(0,1),
∴f(0)=2sinφ=1,可得sinφ=
1
2

又∵0≤φ≤
π
2

∴φ=
π
6

∵其中A、B两点的纵坐标分别为2、-2,
∴设A、B的横坐标之差为d,则|AB|=
d2+(-2-2)2
=5,解之得d=3,
由此可得函数的周期T=6,得
ω
=6,解之得ω=
π
3

故选:C.
点评:本题给出正弦型三角函数的图象,确定其解析式并求f(-1)的值.着重考查了勾股定理、由y=Asin(ωx+φ)的部分图象确定其解析式等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网