题目内容
9.在△ABC中,S为△ABC的面积,且$S=\frac{1}{2}({b^2}+{c^2}-{a^2})$,则tanB+tanC-2tanBtanC=( )| A. | 1 | B. | -1 | C. | 2 | D. | -2 |
分析 由已知利用三角形面积公式,余弦定理,同角三角函数基本关系式化简可求tanA=2,进而利用三角形内角和定理,两角和的正切函数公式化简整理即可得解.
解答 解:∵$S=\frac{1}{2}({b^2}+{c^2}-{a^2})$,
∴$\frac{1}{2}$bcsinA=$\frac{1}{2}$×2bccosA,解得:tanA=2,
∴tanA=-tan(B+C)=-$\frac{tanB+tanC}{1-tanBtanC}$=2,整理可得:tanB+tanC-2tanBtanC=-2,
故选:D.
点评 本题主要考查了三角形面积公式,余弦定理,同角三角函数基本关系式,三角形内角和定理,两角和的正切函数公式在解三角形中的应用,考查了转化思想,属于基础题.
练习册系列答案
相关题目
19.《张丘建算经》是我国古代数学名著,书中有如下问题:“今有女不善织布,每天所织的布以同数递减,初日织五尺,末日织一尺,共织三十日,问共织几何?”其意思是:“一女子织布30天,每天所织布的数以相同的数递减,第一天织布5尺,最后一天织布1尺,则30天共织布多少尺?”那么该女子30天共织布( )
| A. | 70尺 | B. | 80尺 | C. | 90尺 | D. | 100尺 |
17.已知f(x)=2sin2x+2sinxcosx,则f(x)的最小正周期和一个单调减区间分别为( )
| A. | 2π,[$\frac{3π}{8}$,$\frac{7π}{8}$] | B. | π,[$\frac{3π}{8}$,$\frac{7π}{8}$] | C. | 2π,[-$\frac{π}{8}$,$\frac{3π}{8}$] | D. | π,[-$\frac{π}{8}$,$\frac{3π}{8}$] |
5.关于x、y的方程组$\left\{\begin{array}{l}(m+1)x-y-3m=0\\ 4x+(m-1)y+7=0\end{array}\right.$( )
| A. | 有唯一的解 | B. | 有无穷多解 | ||
| C. | 由m的值决定解的情况 | D. | 无解 |