ÌâÄ¿ÄÚÈÝ

2£®ÒÑÖª¹«±ÈСÓÚ1µÄµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬a1=$\frac{1}{2}£¬7{a_2}=2{S_3}$£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Éèbn=log2£¨1-Sn+1£©£¬Èô$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_3}{b_5}}}+¡­+\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}=\frac{5}{21}$£¬Çón£®

·ÖÎö £¨1£©Éè³ö¹«±È£¬ÀûÓÃÒÑÖªÌõ¼þÇó³ö¹«±È£¬È»ºóÇó½âÊýÁеÄͨÏʽ£®
£¨2£©Çó³öÊýÁеĺͣ¬ÍƳöͨÏʽ£¬»¯¼òËùÇó±í´ïʽ£®ÀûÓÃÁÑÏîÇóºÍÇó½â¼´¿É£®

½â´ð ½â£º£¨1£©ÉèµÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪq£¬
¡ß7a2=2S3£¬¡à5a2=2a1+2a3£¬¡­£¨2·Ö£©
Ôò2q2-5q+2=0£¬½âµÃ$q=\frac{1}{2}$»òq=2£¨ÉáÈ¥£©£¬¡­£¨4·Ö£©
¹Ê${a_n}=\frac{1}{2}•{£¨{\frac{1}{2}}£©^{n-1}}={£¨{\frac{1}{2}}£©^n}$¡­£¨6·Ö£©
£¨2£©¡ß${S_{n+1}}=\frac{{\frac{1}{2}£¨{1-\frac{1}{{{2^{n+1}}}}}£©}}{{1-\frac{1}{2}}}=1-\frac{1}{{{2^{n+1}}}}$£¬¡­£¨8·Ö£©
¡àbn=log2£¨1-Sn+1£©=-n-1£¬¡­£¨9·Ö£©
¡à$\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}=\frac{1}{{£¨{-2n}£©£¨{-2n-2}£©}}=\frac{1}{4}£¨{\frac{1}{n}-\frac{1}{n+1}}£©$£¬¡­£¨10·Ö£©$\frac{1}{{{b_1}{b_3}}}+\frac{1}{{{b_3}{b_5}}}+¡­+\frac{1}{{{b_{2n-1}}{b_{2n+1}}}}=\frac{1}{4}[{£¨{1-\frac{1}{2}}£©+£¨{\frac{1}{2}-\frac{1}{3}}£©+¡­+£¨{\frac{1}{n}-\frac{1}{n+1}}£©}]=\frac{1}{4}£¨{1-\frac{1}{n+1}}£©$£¬¡­£¨11·Ö£©
ÓÉ$\frac{1}{4}£¨{1-\frac{1}{n+1}}£©=\frac{5}{21}$£¬µÃn=20¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿪ÐÄÊýÁеÄͨÏʽµÄÇ󷨣¬ÊýÁÐÇóºÍ£¬¿¼²éת»¯Ë¼ÏëÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø