题目内容
6.设f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{x{+∫}_{0}^{a}3{t}^{2}dt,x≤0}\end{array}\right.$,若f(f(1))≥1,则实数a的范围是( )| A. | a≤-1 | B. | a≥-1 | C. | a≤1 | D. | a≥1 |
分析 由题意可得,f(1)=lg1=0,则f(f(1))=f(0)=${∫}_{0}^{a}$3t2dt,根据定积分的计算即可求出a的范围.
解答 解:由题意可得,f(1)=lg1=0,
∴f(f(1))=f(0)=${∫}_{0}^{a}$3t2dt=t3|${\;}_{0}^{a}$=a3,
∴a3≥1即a≥1.
故选:D
点评 本题主要考查了分段函数的函数值的求解,解题的关键是对已知积分的求解,属于中档试题
练习册系列答案
相关题目
10.球的大圆面积扩大为原大圆面积的4倍,则球的表面积扩大成原球表面积的( )
| A. | 2倍 | B. | 4倍 | C. | 8倍 | D. | 16倍 |
15.已知数列{an}的前n项和Sn=2an-1,则数列{an}的通项公式为( )
| A. | an=2n | B. | an=2n-1 | C. | an=2n-1 | D. | an=2n-1-1 |
16.某车间为了规定工时定额,需要确定加工零件所花费的时间,为些作了四次试验,得到的数据如下表所示:
(Ⅰ)求出y关于x的线性回归方程$\widehaty$=$\widehatbx$+$\widehata$,并在坐标系中画出回归直线;
(Ⅱ)试预测加工10个零件需要多少时间?b=$\frac{{\sum_{i=1}^n{({{x_1}-\overline x})({{y_1}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_1}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_1}{y_1}-n\overline{xy}}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,$\overline{x}$=$\frac{1}{n}\sum_{i=1}^n{x_1}$,$\overline y$=$\frac{1}{n}\sum_{i=1}^n{y_1}$.
| 零件的个数x(个) | 2 | 3 | 4 | 5 |
| 加工的时间y(小时) | 2.5 | 3 | 4 | 4.5 |
(Ⅱ)试预测加工10个零件需要多少时间?b=$\frac{{\sum_{i=1}^n{({{x_1}-\overline x})({{y_1}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_1}-\overline x})}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_1}{y_1}-n\overline{xy}}}}{{\sum_{i=1}^n{x_1^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb\overline x$,$\overline{x}$=$\frac{1}{n}\sum_{i=1}^n{x_1}$,$\overline y$=$\frac{1}{n}\sum_{i=1}^n{y_1}$.