题目内容

1.已知定义域为R的函数$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函数.
(1)求a,b的值;
(2)若对于t∈R,不等式f(2t2-k)+f(t2-2t)<0恒成立,求k的取值范围.

分析 (1)由f(0)=0可求得b,再由f(-x)=$\frac{{2}^{x}-1}{1+a{•2}^{x}}$=-f(x)=-$\frac{1-{2}^{x}}{{2}^{x}+a}$可求得a的值;
(2)由(1)知,$f(x)=\frac{1-{2}^{x}}{{2}^{x}+1}$=-1+$\frac{2}{{2}^{x}+1}$为减函数,不等式f(2t2-k)+f(t2-2t)<0恒成立?f(2t2-k)<-f(t2-2t)=f(2t-t2)恒成立?k<(3t2-2t)min,从而可求得k的取值范围.

解答 解:(1)∵定义域为R的函数$f(x)=\frac{{b-{2^x}}}{{{2^x}+a}}$是奇函数,
∴f(0)=$\frac{b-{2}^{0}}{{2}^{0}+a}$=0,∴b=1;
∴$f(x)=\frac{1-{2}^{x}}{{2}^{x}+a}$,
∵f(-x)=$\frac{1-{2}^{-x}}{{2}^{-x}+a}$=$\frac{{2}^{x}-1}{1+a{•2}^{x}}$=-f(x)=-$\frac{1-{2}^{x}}{{2}^{x}+a}$,
∴1+a•2x=2x+a,
∴a=1,
∴a=b=1;
(2)对于t∈R,不等式f(2t2-k)+f(t2-2t)<0恒成立?f(2t2-k)<-f(t2-2t)=f(2t-t2),
由(1)知,$f(x)=\frac{1-{2}^{x}}{{2}^{x}+1}$=-1+$\frac{2}{{2}^{x}+1}$为减函数,
∴2t2-k>2t-t2恒成立,
∴k<(3t2-2t)min
又y=3t2-2t=3(t-$\frac{1}{3}$)2-$\frac{1}{3}$≥-$\frac{1}{3}$,
∴k<-$\frac{1}{3}$.

点评 本题考查函数恒成立问题,考查函数奇偶性的应用,考查函数与方程思想、等价转化思想的综合运用,考查运算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网