题目内容
18.已知圆C:x2+(y-2)2=1,P是x轴正半轴上的一个动点,若PA,PB分别切圆C于A,B两点,若|AB|=$\frac{4\sqrt{2}}{3}$,则直线CP的方程为2x+$\sqrt{5}$y-2$\sqrt{5}$=0.分析 如图所示,由切线长定理得到Q为线段AB中点,在直角三角形ACQ中,利用勾股定理求出|CQ|的长,再利用相似求出|CP|的长,设P(p,0),利用勾股定理求出p的值,即可确定出直线CP方程.
解答
解:如图所示,|AC|=r=1,|AQ|=$\frac{1}{2}$|AB|=$\frac{2\sqrt{2}}{3}$,
在Rt△ACQ中,根据勾股定理得:|CQ|=$\frac{1}{3}$,
∵△ACQ∽△PCA,
∴$\frac{\frac{1}{3}}{1}$=$\frac{1}{|CP|}$,即|CP|=3,
设P(p,0)(p>0),即|OP|=p,
在Rt△OPC中,根据勾股定理得:9=4+p2,
解得:p=$\sqrt{5}$,即P($\sqrt{5}$,0),
则直线CP解析式为y=$\frac{2-0}{0-\sqrt{5}}$(x-$\sqrt{5}$),即2x+$\sqrt{5}$y-2$\sqrt{5}$=0,
故答案为:2x+$\sqrt{5}$y-2$\sqrt{5}$=0
点评 此题考查了直线与圆的位置关系,涉及的知识有:切线长定理,切线性质,勾股定理,相似三角形的判定与性质,以及直线的两点式方程,熟练掌握性质及定理是解本题的关键.
练习册系列答案
相关题目
3.定义在R上的函数f(x)的导函数为f'(x),f(x)的图象关于直线x=1对称,且(x-1)f'(x)<0,若x1<x2,且x1+x2>2,则f(x1)与f(x2)的大小关系是( )
| A. | f(x1)>f(x2) | B. | f(x1)<f(x2) | C. | f(x1)=f(x2) | D. | 不确定 |
6.设f(x)=$\left\{\begin{array}{l}{lgx,x>0}\\{x{+∫}_{0}^{a}3{t}^{2}dt,x≤0}\end{array}\right.$,若f(f(1))≥1,则实数a的范围是( )
| A. | a≤-1 | B. | a≥-1 | C. | a≤1 | D. | a≥1 |
13.过抛物线y2=4x的焦点作两条垂直的弦AB,CD,则$\frac{1}{|AB|}$+$\frac{1}{|CD|}$=( )
| A. | 2 | B. | 4 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
10.已知f(x)是偶函数,当x>0时,f(x)=10x,则当x<0时,f(x)=( )
| A. | ${(\frac{1}{10})^x}$ | B. | -(10)x | C. | -${(\frac{1}{10})^x}$ | D. | 不能确定 |