题目内容
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次得到的点数、分别作为点的横、纵坐标,则点不在直线下方的概率为 .
若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线扫过中的那部分区域的面积为 ( )
A.1 B. C. D.
若直线上存在点满足约束条件,则实数的最大值为
选修4—4:极坐标与参数方程
已知圆的极坐标方程为:.
(1)将极坐标方程化为普通方程;
(2)若点P(x,y)在该圆上,求x+y的最大值和最小值.
(本小题满分14分)
如图,在五面体ABCDEF中,四边形ABCD是平行四边形.
(1)若CF⊥AE,AB⊥AE,求证:平面ABFE⊥平面CDEF;
(2)求证:EF//平面ABCD.
某射击运动员在四次射击中分别打出了10,x,10,8环的成绩,已知这组数据的平均数为9,则这组数据的标准差是 .
(本小题满分12分)
如图,三棱柱中,平面,,, 点在线段上,且,.
(Ⅰ)求证:直线与平面不平行;
(Ⅱ)设平面与平面所成的锐二面角为,若,求的长;
(Ⅲ)在(Ⅱ)的条件下,设平面平面,求直线与所成的角的余弦值.
某医疗研究所为了检验某种血清预防感冒的作用,把500名使用血清的人与另外500名未使用血清的人一年中的感冒记录作比较,提出假设:“这种血清不能起到预防感冒的作用”,利用2×2列联表计算的结果,认为成立的可能性不足1%,那么的一个可能取值为( )
A.7.897 B.6.635 C. 5.024 D. 3.841
给定下列四个命题:
①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行;
②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直;
③垂直于同一直线的两条直线相互平行;
④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.
其中,为真命题的是 ( )
A.①和② B.②和③ C.③和④ D.②和④