题目内容
某射击运动员在四次射击中分别打出了10,x,10,8环的成绩,已知这组数据的平均数为9,则这组数据的标准差是 .
函数的单调递减区间是( )
A. B.
C. D.
一个几何体的三视图如图所示,其中正视图是正三角形,则几何体的外接球的表面积为
(本小题满分14分)
在平面直角坐标系xoy中,椭圆C :的离心率为,右焦点F(1,0),点P在椭圆C上,且在第一象限内,直线PQ与圆O:相切于点M.
(1)求椭圆C的方程;
(2)求|PM|·|PF|的取值范围;
(3)若OP⊥OQ,求点Q的纵坐标t的值.
将一颗质地均匀的正方体骰子(六个面的点数分别为1,2,3,4,5,6)先后抛掷两次得到的点数、分别作为点的横、纵坐标,则点不在直线下方的概率为 .
(本小题满分14分)
若定义在上的函数满足,
,.
(Ⅰ)求函数解析式;
(Ⅱ)求函数单调区间;
(Ⅲ)若、、满足,则称比更接近.当且时,试比较和哪个更接近,并说明理由.
(选修4-1:几何证明选讲)如图,是⊙的直径,是⊙上的两点,⊥,过点作⊙的切线FD交的延长线于点.连结交于点,,则.
在四棱锥中,底面为直角梯形,,侧面底面,,.
(1)若中点为.求证:;
(2)若,求直线与平面所成角的正弦值.
已知曲线的参数方程为为参数),在平面直角坐标系中,以坐标原点为极点,轴的非负半轴极轴建立极坐标系,曲线的极坐标方程为,求与交点的极坐标,其中