题目内容

16.函数y=Asin(ω•x+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则此函数的解析式为y=3sin(2x+$\frac{π}{3}$).

分析 根据图中数据,求出A,ω和φ的值即可写出函数的解析式.

解答 解:由图象知A=3,且$\frac{1}{2}$T=$\frac{π}{12}$-(-$\frac{5π}{12}$)=$\frac{π}{2}$,
解得T=π;
即$\frac{2π}{ω}$=π,解得ω=2,
则y=3sin(2x+φ),
所以当x=$\frac{π}{12}$时,y=3sin(2×$\frac{π}{12}$+φ)=3,
即sin($\frac{π}{6}$+φ)=1,
解得$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,即φ=2kπ+$\frac{π}{3}$,
∵|φ|<π,
∴当k=0时,φ=$\frac{π}{3}$,
即y=3sin(2x+$\frac{π}{3}$).
故答案为:y=3sin(2x+$\frac{π}{3}$).

点评 本题主要考查了求三角函数解析式问题,是基础题目.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网