题目内容
已知函数f(x)=ln
,则f(
)+f(
)f(
)+f(
)+f(
)+f(
)+f(
)+f(
)+f(
)= .
| x-1 |
| 2-x |
| 11 |
| 10 |
| 6 |
| 5 |
| 13 |
| 10 |
| 7 |
| 5 |
| 3 |
| 2 |
| 8 |
| 5 |
| 17 |
| 10 |
| 9 |
| 5 |
| 19 |
| 10 |
考点:对数的运算性质
专题:函数的性质及应用
分析:由已知条件得f(
)+f(
)f(
)+f(
)+f(
)+f(
)+f(
)+f(
)+f(
)=ln(
×
×
×
×1×
×
×4×9),由此能求出结果.
| 11 |
| 10 |
| 6 |
| 5 |
| 13 |
| 10 |
| 7 |
| 5 |
| 3 |
| 2 |
| 8 |
| 5 |
| 17 |
| 10 |
| 9 |
| 5 |
| 19 |
| 10 |
| 1 |
| 9 |
| 1 |
| 4 |
| 3 |
| 7 |
| 2 |
| 3 |
| 3 |
| 2 |
| 7 |
| 3 |
解答:
解:∵函数f(x)=ln
,
∴f(
)+f(
)f(
)+f(
)+f(
)+f(
)+f(
)+f(
)+f(
)
=ln(
×
×
×
×1×
×
×4×9)
=ln1=0.
故答案为:0.
| x-1 |
| 2-x |
∴f(
| 11 |
| 10 |
| 6 |
| 5 |
| 13 |
| 10 |
| 7 |
| 5 |
| 3 |
| 2 |
| 8 |
| 5 |
| 17 |
| 10 |
| 9 |
| 5 |
| 19 |
| 10 |
=ln(
| 1 |
| 9 |
| 1 |
| 4 |
| 3 |
| 7 |
| 2 |
| 3 |
| 3 |
| 2 |
| 7 |
| 3 |
=ln1=0.
故答案为:0.
点评:本题考查函数值的求法,注意对数的性质的合理运用.
练习册系列答案
相关题目