题目内容

13.设m∈R,过定点A的动直线mx+y-1=0与过定点B的动直线x-my+m+2=0交于点P(x,y),则|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的取值范围为2$\sqrt{2}$.

分析 由动直线mx+y-1=0,解得A(0,1),同理可得B(-2,1).|AB|=2.求出P的方程,当PA⊥PB时,|$\overrightarrow{PA}$|2+|$\overrightarrow{PB}$|2=|AB|2=4,利用基本不等式即可得出结果.

解答 解:由动直线mx+y-1=0,令$\left\{\begin{array}{l}{x=0}\\{y-1=0}\end{array}\right.$,解得A(0,1),同理可得B(-2,1).
∵|AB|=$\sqrt{{2}^{2}+0}$=2.
∴当PA⊥PB时|$\overrightarrow{PA}$|2+|$\overrightarrow{PB}$|2=|AB|2=4,
$\left\{\begin{array}{l}{mx+y-1=0}\\{x-my+m+2=0}\end{array}\right.$,可得P的轨迹方程为:x2+y2-2y+2x+1=0.圆心为(-1,1)半径为1的圆,A,B在圆上,
∴|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|≤$\sqrt{2(|\overrightarrow{PA}{|}^{2}+|\overrightarrow{PB}{|}^{2})}$=2$\sqrt{2}$,当且仅当|$\overrightarrow{PA}$|=|$\overrightarrow{PB}$|=$\sqrt{2}$时取等号.
∴|$\overrightarrow{PA}$|+|$\overrightarrow{PB}$|的最大值为2$\sqrt{2}$.
故答案为:2$\sqrt{2}$.

点评 本题考查了直线系、勾股定理、基本不等式的性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网