题目内容
7.已知p:$\frac{3}{x-1}$≤1,q:x2+x≤a2-a(a<0),若¬q成立的一个充分而不必要条件是¬p,则实数a的取值范围为(-1,0).分析 根据充分条件和必要条件的定义和关系转化为集合关系进行求解即可.
解答 解:由$\frac{3}{x-1}$≤1得$\frac{3}{x-1}$-1=$\frac{3-x+1}{x-1}$=$\frac{4-x}{x-1}$≤0,
即$\frac{x-4}{x-1}≥$0,则x≥4或x<1,即p:x≥4或x<1,
若¬q成立的一个充分而不必要条件是¬p,
则p成立的一个充分而不必要条件是q,
即q⇒p,但p⇒q不成立,
由x2+x≤a2-a(a<0),得x2+x+a-a2≤0(a<0),
即(x+a)(x+1-a)≤0,
即a-1≤x≤-a,(a<0),
即-a<1,
即-1<a<0,
故答案为:(-1,0).
点评 本题主要考查充分条件和必要条件的定义域,求出命题的等价条件,结合充分条件和必要条件的定义转化为对应的集合关系是解决本题的关键.
练习册系列答案
相关题目
17.数列{an}满足a1=1,对任意的n∈N*都有an+1=a1+an+n,则$\frac{1}{a_1}+\frac{1}{a_2}+…+\frac{1}{{{a_{2016}}}}$=( )
| A. | $\frac{2015}{2016}$ | B. | $\frac{2016}{2017}$ | C. | $\frac{4032}{2017}$ | D. | $\frac{4034}{2017}$ |
2.下列说法中正确的是( )
| A. | 若命题P:?x∈R有x2>0,则¬P:?x∈R有x2≤0 | |
| B. | 直线a、b为异面直线的充要条件是直线a、b不相交 | |
| C. | 若p是q的充分不必要条件,则¬q是¬p的充分不必要条件 | |
| D. | 方程ax2+x+a=0有唯一解的充要条件是a=±$\frac{1}{2}$ |
12.抛物线x2=2y上的点到直线x-2y-4=0的距离的最小值是( )
| A. | $\frac{\sqrt{5}}{4}$ | B. | $\frac{2\sqrt{5}}{5}$ | C. | $\frac{3\sqrt{5}}{4}$ | D. | $\frac{3\sqrt{5}}{5}$ |