题目内容
6.设向量$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=6,|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,且$\overrightarrow{b}$⊥$\overrightarrow{c}$,则|$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围为( )| A. | [4,8] | B. | [4$\sqrt{2}$,8$\sqrt{2}$] | C. | (4,8) | D. | (4$\sqrt{2}$,8$\sqrt{2}$) |
分析 根据题意,设($\overrightarrow{a}$+$\overrightarrow{b}$)与$\overrightarrow{a}$的夹角为θ,由向量数量积的运算性质有|$\overrightarrow{b}$|2=[($\overrightarrow{a}$+$\overrightarrow{b}$)-$\overrightarrow{a}$]2=|$\overrightarrow{a}$+$\overrightarrow{b}$|2-2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$+|$\overrightarrow{a}$|2=40-24cosθ,分析可得|$\overrightarrow{b}$|的范围,又由|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,且$\overrightarrow{b}$⊥$\overrightarrow{c}$,则|$\overrightarrow{b}$-$\overrightarrow{c}$|=$\sqrt{2}$|$\overrightarrow{b}$|,分析可得答案.
解答 解:根据题意,设($\overrightarrow{a}$+$\overrightarrow{b}$)与$\overrightarrow{a}$的夹角为θ,$\overrightarrow{b}$=($\overrightarrow{a}$+$\overrightarrow{b}$)-$\overrightarrow{a}$,且|$\overrightarrow{a}$|=2,|$\overrightarrow{a}$+$\overrightarrow{b}$|=6,
则|$\overrightarrow{b}$|2=[($\overrightarrow{a}$+$\overrightarrow{b}$)-$\overrightarrow{a}$]2=|$\overrightarrow{a}$+$\overrightarrow{b}$|2-2($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$+|$\overrightarrow{a}$|2=40-24cosθ,
即16≤|$\overrightarrow{b}$|2≤64,
分析可得:4≤|$\overrightarrow{b}$|≤8,
又由|$\overrightarrow{b}$|=|$\overrightarrow{c}$|,且$\overrightarrow{b}$⊥$\overrightarrow{c}$,则|$\overrightarrow{b}$-$\overrightarrow{c}$|=$\sqrt{2}$|$\overrightarrow{b}$|,
则有4$\sqrt{2}$≤|$\overrightarrow{b}$-$\overrightarrow{c}$|≤8$\sqrt{2}$,
故|$\overrightarrow{b}$-$\overrightarrow{c}$|的取值范围为[4$\sqrt{2}$,8$\sqrt{2}$],
故选:B.
点评 本题考查向量的数量积的计算,涉及向量加减以及模的计算,关键是掌握向量的加减法的几何意义.
| A. | π | B. | $\frac{7π}{4}$ | C. | 4π | D. | 7π |