题目内容

14.在三棱锥A-BCD中AB=AC=1,DB=DC=2,AD=BC=$\sqrt{3}$,则三棱锥A-BCD的外接球的表面积为(  )
A.πB.$\frac{7π}{4}$C.D.

分析 建立坐标系,求出外接球的球心,计算外接球的半径,从而得出外接球面积.

解答 解:∵AB=AC=1,AD=BC=$\sqrt{3}$,BD=CD=2,
∴AB⊥AD,AC⊥AD,
∴AD⊥平面ABC,
在△ABC中,由余弦定理得cos∠BAC=$\frac{A{B}^{2}+A{C}^{2}-B{C}^{2}}{2AB•AC}$=-$\frac{1}{2}$,
∴∠ABC=120°,
以AC为x轴,以AD为z轴建立如图所示的坐标系:
则A(0,0,0),B(-$\frac{1}{2}$,$\frac{\sqrt{3}}{2}$,0),C(1,0,0),D(0,0,$\sqrt{3}$),
设棱锥A-BCD的外接球球心为M(x,y,z),
则x2+y2+z2=(x+$\frac{1}{2}$)2+(y-$\frac{\sqrt{3}}{2}$)2+z2=(x-1)2+y2+z2=x2+y2+(z-$\sqrt{3}$)2
解得x=$\frac{1}{2}$,y=$\frac{\sqrt{3}}{2}$,z=$\frac{\sqrt{3}}{2}$,
∴外接球的半径为r=$\sqrt{{x}^{2}+{y}^{2}+{z}^{2}}$=$\frac{\sqrt{7}}{2}$.
∴外接球的表面积S=4πr2=7π.
故选D.

点评 本题考查了棱锥与外接球的位置关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网