题目内容

已知a,b,c∈R*,证明:
(1)(a+b+c)(a2+b2+c2)≤3(a3+b3+c3);
(2)
a
b+c
+
b
c+a
+
c
a+b
3
2
考点:不等式的证明
专题:高考数学专题
分析:第(1)问考虑左边展开与右边可抵消一个a2+b2+c2,想到作差比较,项较多,可重新分组进行因式分解;第(2)可通过构造柯西不等式放缩,获取定值.
解答: 证明:(Ⅰ)右边-左边,得3(a3+b3+c3)-(a+b+c)(a2+b2+c2
=2(a3+b3+c3)-a(b2+c2)-b(a2+c2)-c(a2+b2).
∵a,b∈R*,∴a3+b3-a2b-ab2=a2(a-b)+b2(b-a)=(a-b)2(a+b)≥0.
∴a3+b3≥a2b+ab2
    同理,b3+c3≥b2c+bc2,a3+c3≥a2c+ac2
    以上三式相加得=2(a3+b3+c3)≥a2b+ab2+b2c+bc2+a2c+ac,
∴2(a3+b3+c3)-a(b2+c2)-b(a2+c2)-c(a2+b2)≥0,
∴(a+b+c)(a2+b2+c2)≤3(a3+b3+c3).      
   (Ⅱ)∵a,b,c∈R*,∴a+b>0,b+c>0,c+a>0,
    由柯西不等式得)[(a+b)+(b+c)+(c+a)](
1
a+b
+
1
b+c
+
1
c+a
)

(
a+b
1
a+b
+
b+c
1
b+c
+
c+a
1
c+a
)
2=9,
    即2(a+b+c)(
1
a+b
+
1
b+c
+
1
c+a
)≥9,
∴2(
a
b+c
+
b
c+a
+
c
a+b
)≥3,故
a
b+c
+
b
c+a
+
c
a+b
3
2

    当且仅当a=b=c时,不等式取等号.
点评:本题的两小问设置合理,主要考查了不等式的基本性质及变形技巧,作差比较法,柯西不等式等.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网