题目内容
12.复数z满足z(1+i)=|1-i|,则复数z的虚部是( )| A. | -1 | B. | 1 | C. | -$\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}}{2}$ |
分析 利用复数的运算法则、虚部的定义即可得出.
解答 解:∵z(1+i)=|1-i|,∴z(1+i)(1-i)=$\sqrt{2}$(1-i),∴z=$\frac{\sqrt{2}}{2}$-$\frac{\sqrt{2}}{2}$i,
则复数z的虚部是-$\frac{\sqrt{2}}{2}$,
故选:C.
点评 本题考查了复数的运算法则、虚部的定义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
2.已知以椭圆$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{m}$=1(m>0)的焦点连线F1F2为直径的圆和该椭圆在第一象限相交于点P.若△PF1F2的面积为1,则m的值为1.
3.已知实数a,b满足(a+bi)(2+i)=3-5i(其中i为虚数单位),则复数z=b-ai的共扼复数为( )
| A. | -$\frac{13}{5}$+$\frac{1}{5}$i | B. | -$\frac{13}{5}$-$\frac{1}{5}$i | C. | $\frac{13}{5}$+$\frac{1}{5}$i | D. | $\frac{13}{5}$-$\frac{1}{5}$i |
20.若$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),定义一种向量积:$\overrightarrow{a}$?$\overrightarrow{b}$=(a1b1,a2b2),已知$\vec m=(1,\frac{1}{2}),\vec n=(0,1)$,且点P(x,y)在函数$y=sin\frac{x}{2}$的图象上运动,点q在函数y=f(x)的图象上运动,且点p和点q满足:$\overrightarrow{OQ}$=$\overrightarrow{m}$?$\overrightarrow{OP}$+$\overrightarrow{n}$(其中O为坐标原点),则函数y=f(x)的最大值A及最小正周期T分别为( )
| A. | 1,π | B. | 1,4π | C. | $\frac{3}{2},π$ | D. | $\frac{3}{2},4π$ |
17.某校1000名学生中,O型血有400人,A型血有250人,B型血有250人,AB型血有100人,为了研究血型与色弱的关系,要从中抽取一个容量为40的样本,按照分层抽样的方法抽取样本,则O型血、A型血、B型血、AB型血的人要分别抽的人数为( )
| A. | 16、10、10、4 | B. | 14、10、10、6 | C. | 13、12、12、3 | D. | 15、8、8、9 |
1.在极坐标系中,过点A(6,π)作圆ρ=-4cosθ的切线,则切线长为( )
| A. | 6 | B. | $2\sqrt{3}$ | C. | $4\sqrt{3}$ | D. | $2\sqrt{15}$ |