题目内容
20.设f(x)是定义在R上的奇函数,当x<0时,f(x)=2x+1,则f(0)+f(1)=( )| A. | $-\frac{3}{2}$ | B. | 1 | C. | $\frac{1}{2}$ | D. | 5 |
分析 根据函数奇偶性的性质将条件进行转化求解即可.
解答 解:∵f(x)是定义在R上的奇函数,当x<0时,f(x)=2x+1,
∴f(0)=0,
f(1)=-f(-1)=-($\frac{1}{2}$+1)=$-\frac{3}{2}$,
则f(0)+f(1)=$-\frac{3}{2}$,
故选:A
点评 本题主要考查函数值的计算,根据函数奇偶性的性质进行转化求解是解决本题的关键.
练习册系列答案
相关题目
10.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点分别为F1,F2,点P满足|PF1|-|PF2|=2a,若$\overrightarrow{PM}$+$\overrightarrow{{F}_{1}M}$=$\overrightarrow{0}$,且M(0,b),则双曲线C的渐近线方程为( )
| A. | y=±2x | B. | y=±$\sqrt{5}$x | C. | y=±2$\sqrt{2}$x | D. | y=±$\sqrt{3}$x |
8.
如图所示的程序框图描述的算法称为“欧几里得”辗转相除法,若输入m=2821,n=2015,则输出的m的值为( )
| A. | 1 | B. | 403 | C. | 806 | D. | 2015 |
5.
我们可以用随机模拟的方法估计π的值,如图程序框图表示其基本步骤(函数RAND是产生随机数的函数,它能随机产生(0,1)内的任何一个实数).若输出的结果为527,则由此可估计π的近似值为( )
| A. | 3.126 | B. | 3.132 | C. | 3.151 | D. | 3.162 |
12.已知ω为正整数,函数f(x)=sinωxcosωx+${cos^2}ωx-\frac{1}{2}$在区间$({-\frac{π}{3},\frac{π}{12}})$内单调递增,则函数f(x)( )
| A. | 最小值为$-\frac{1}{2}$,其图象关于点$({\frac{π}{4},0})$对称 | |
| B. | 最大值为$\frac{{\sqrt{2}}}{2}$,其图象关于直线$x=-\frac{π}{8}$对称 | |
| C. | 最小正周期为2π,其图象关于点$({\frac{3π}{4},0})$对称 | |
| D. | 最小正周期为π,其图象关于直线$x=-\frac{3π}{8}$对称 |