ÌâÄ¿ÄÚÈÝ
11£®ÓÐÏÞÓëÎÞÏÞת»¯ÊÇÊýѧÖÐÒ»ÖÖÖØÒªË¼Ïë·½·¨£¬ÈçÔÚ¡¶¾ÅÕÂËãÊõ¡··½ÌïÕÂÔ²ÌïÊõ£¨Áõ»Õ×¢£©ÖУº¡°¸îÖ®ÓÖ¸îÒÔÖÁÓÚ²»¿É¸î£¬ÔòÓëÔ²ºÏÌå¶øÎÞËùʧÒÓ£®¡±ËµÃ÷¡°¸îÔ²Êõ¡±ÊÇÒ»ÖÖÎÞÏÞÓëÓÐÏÞµÄת»¯¹ý³Ì£¬ÔÙÈç$\sqrt{2+\sqrt{2+\sqrt{2+¡}}}$ÖС°¡¡±¼´´ú±íÎÞÏÞ´ÎÖØ¸´£¬µ«ÔʽȴÊǸö¶¨Öµx£®Õâ¿ÉÒÔͨ¹ý·½³Ì$\sqrt{2+x}$=xÈ·¶¨³öÀ´x=2£¬ÀàËÆµØ¿ÉÒÔ°ÑÑ»·Ð¡Êý»¯Îª·ÖÊý£¬°Ñ0.$\stackrel{•}{3}\stackrel{•}{6}$»¯Îª·ÖÊýµÄ½á¹ûΪ$\frac{4}{11}$£®·ÖÎö ¸ù¾ÝÉÏÊö¿ÉÉè0.$\stackrel{•}{3}\stackrel{•}{6}$=x£¬Ôò¿ÉµÃµ½·½³Ì0.36+$\frac{1}{100}$x=x£¬½âµÃ¼´¿É£®
½â´ð ½â£ºÉè0.$\stackrel{•}{3}\stackrel{•}{6}$=x£¬Ôò0.00$\stackrel{•}{3}\stackrel{•}{6}$=$\frac{1}{100}$x£¬
Ôò0.36+$\frac{1}{100}$x=x£¬
½âµÃx=$\frac{4}{11}$£¬
¹Ê´ð°¸Îª£º$\frac{4}{11}$
µãÆÀ ±¾Ì⿼²éÁËÀà±ÈÍÆÀíµÄÎÊÌ⣬ÊÇÒ»µÀ»ù´¡Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
1£®¶¨ÒåÔÚRÉϵĺ¯Êýf£¨x£©µÄµ¼º¯ÊýΪf'£¨x£©£¬ÇÒf£¨x£©+xf'£¨x£©£¼xf£¨x£©¶Ôx¡ÊRºã³ÉÁ¢£¬Ôò£¨¡¡¡¡£©
| A£® | $\frac{2}{e}f£¨2£©£¼f£¨1£©$ | B£® | $\frac{2}{e}f£¨2£©£¾f£¨1£©$ | C£® | f£¨1£©£¾0 | D£® | f£¨-1£©£¾0 |
6£®ÒÑÖª¹ýÇúÏß$\left\{\begin{array}{l}{x=3sin¦È}\\{y=3cos¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£¬0¡Ü¦È¡Ü¦Ð£©ÉÏÒ»µãPÓëÔµãOµÄÖ±ÏßPOµÄÇãб½ÇΪ$\frac{¦Ð}{2}$£¬ÔòPµã×ø±êÊÇ£¨¡¡¡¡£©
| A£® | £¨0£¬3£© | B£® | $£¨-\frac{12}{5}£¬-\frac{12}{5}£©$ | C£® | £¨-3£¬0£© | D£® | $£¨\frac{12}{5}£¬\frac{12}{5}£©$ |
16£®Èçͼ£¬Ä³¼¸ºÎÌåµÄÈýÊÓͼ¶¼ÊÇÖ±½ÇÈý½ÇÐΣ¬Èô¼¸ºÎÌåµÄ×î´óÀⳤΪ2£¬Ôò¸Ã¼¸ºÎÌåµÄÍâ½ÓÇòµÄÌå»ýÊÇ£¨¡¡¡¡£©

| A£® | $\sqrt{6}¦Ð$ | B£® | $\frac{4}{3}¦Ð$ | C£® | 4¦Ð | D£® | 6¦Ð |
3£®ÒÑÖªº¯Êýg£¨x£©=1-cos£¨¦Ðx+ϕ£©£¨0¡Üϕ£¼¦Ð£©µÄͼÏó¹ý£¨$\frac{1}{2}$£¬2£©£¬ÈôÓÐ4¸ö²»Í¬µÄÕýÊýxiÂú×ãg£¨xi£©=M£¨0£¼M£¼1£©£¬ÇÒxi£¼4£¨i=1£¬2£¬3£¬4£©£¬Ôò´ÓÕâËĸöÊýÖÐÈÎÒâÑ¡³öÁ½¸ö£¬ËüÃǵĺͲ»³¬¹ý5µÄ¸ÅÂÊΪ£¨¡¡¡¡£©
| A£® | $\frac{1}{6}$ | B£® | $\frac{1}{3}$ | C£® | $\frac{1}{2}$ | D£® | $\frac{2}{3}$ |
20£®Éèf£¨x£©ÊǶ¨ÒåÔÚRÉÏµÄÆæº¯Êý£¬µ±x£¼0ʱ£¬f£¨x£©=2x+1£¬Ôòf£¨0£©+f£¨1£©=£¨¡¡¡¡£©
| A£® | $-\frac{3}{2}$ | B£® | 1 | C£® | $\frac{1}{2}$ | D£® | 5 |