题目内容

10.计算下列各式:
(1)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)(a>0,b>0)
(2)$2{({lg\sqrt{2}})^2}+lg\sqrt{2}×lg5+\sqrt{{{({lg\sqrt{2}})}^2}-lg2+1}$.

分析 (1)利用指数式性质、运算法则求解.
(2)利用对数性质、运算法则求解.

解答 解:(1)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$)(a>0,b>0)
=4${a}^{\frac{2}{3}+\frac{1}{2}-\frac{1}{6}}{b}^{\frac{1}{2}+\frac{1}{3}-\frac{5}{6}}$
=4a.
(2)$2{({lg\sqrt{2}})^2}+lg\sqrt{2}×lg5+\sqrt{{{({lg\sqrt{2}})}^2}-lg2+1}$
=lg$\sqrt{2}$(lg2+lg5)+$\sqrt{(lg\sqrt{2}-1)^{2}}$
=lg$\sqrt{2}+1-lg\sqrt{2}$
=1.

点评 本题考查指数、对数的化简求值,是基础题,解题时要认真审题,注意指数式、对数式性质、运算法则的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网