题目内容

3.在空间在,设m,n,l是三条不同的直线,α,β是两个不同的平面,则下列命题中正确的是(  )
A.若m⊥l,n⊥l,则m∥nB.若m∥α,n∥α,则m∥nC.若m⊥α,m⊥β,则α∥βD.若m∥α,m∥β,则α∥β

分析 由线面位置关系逐个判断即可:选项A,可得m∥n,m与n相交或m与n异面;选项B,可得α∥β或α与β相交;选项C,同一个平面成立,在空间不成立;选项D,垂直于同一条直线的两个平面平行

解答 解:选项A,由m⊥l,n⊥l,在同一个平面可得m∥n,在空间不成立,故错误;
选项B,由m∥α,n∥α,可得m∥n,m与n相交或m与n异面,故错误;
选项C,由垂直于同一条直线的两个平面平行可知结论正确;
选项D,m∥α,m∥β可得α∥β或α与β相交,故错误;
故选:C.

点评 本题考查命题真假的判断,涉及空间中的线面位置关系,属基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网