题目内容
14.若曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$与曲线C2:y(y-mx-m)=0有4个不同的交点,则实数m的取值范围是( )| A. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | B. | (-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$) | C. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] | D. | (-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞) |
分析 若曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$与曲线C2:y(y-mx-m)=0有4个不同的交点,则y-mx-m=0与曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$有两个交点,且这两个交点不在x轴上,进而得到答案.
解答 解:若曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$与曲线C2:y(y-mx-m)=0有4个不同的交点,
则y-mx-m=0与曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$有两个交点,且这两个交点不在x轴上,
故$\frac{|-2m|}{\sqrt{1+{m}^{2}}}<1$,且m≠0,
解得:m∈(-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$),
故选:B.
点评 本题考查的知识点是直线与圆的位置关系,点到直线的距离公式,难度中档.
练习册系列答案
相关题目
4.某家电专卖店试销A,B,C三种新型空调,销售情况记录如表:
(Ⅰ)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店前三周售出的所有空调中随机抽取一台,求抽到的空调“是B型空调或是第一周售出空调”的概率;
(Ⅱ)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列和数学期望.
| 第一周 | 第二周 | 第三周 | 第四周 | 第五周 | |
| A型数量(台) | 10 | 10 | 15 | A4 | A5 |
| B型数量(台) | 10 | 12 | 13 | B4 | B5 |
| C型数量(台) | 15 | 8 | 12 | C4 | C5 |
(Ⅱ)为跟踪调查空调的使用情况,根据销售记录,从该家电专卖店第二周和第三周售出的空调中分别随机抽取一台,求抽取的两台空调中A型空调台数X的分布列和数学期望.
9.已知角α的终边过点P(-3m,4m)(m<0),则2sinα+cosα的值是( )
| A. | 1 | B. | $\frac{2}{5}$ | C. | -$\frac{2}{5}$ | D. | -1 |
9.双曲线$\frac{x^2}{{25-{m^2}}}$-$\frac{y^2}{{11+{m^2}}}$=1(0<m<5)的焦距为( )
| A. | 6 | B. | 12 | C. | 36 | D. | $2\sqrt{14-2{m^2}}$ |