题目内容
9.已知角α的终边过点P(-3m,4m)(m<0),则2sinα+cosα的值是( )| A. | 1 | B. | $\frac{2}{5}$ | C. | -$\frac{2}{5}$ | D. | -1 |
分析 由题意可得x=-3m,y=4m,r=-5m,可得sinα=-$\frac{4}{5}$,cosα=$\frac{3}{5}$,从而得到 2sinα+cosα 的值.
解答 解:由题意可得 x=-3m,y=4m,r=-5m,
∴sinα=-$\frac{4}{5}$,cosα=$\frac{3}{5}$,∴2sinα+cosα=-1,
故选D.
点评 本题考查任意角的三角函数的定义,两点间的距离公式的应用,求出 sinα和cosα 的值是解题的关键.
练习册系列答案
相关题目
17.某同学用“五点法”画函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如表:
(I)请直接写出上表中a,b,c,d的值,并求函数f(x)的解析式;
(II)把y=f(x)图象上所有点向右平移θ(θ>0)个单位长度,所得图象恰好关于点($\frac{5π}{12}$,0)对称,求θ的最小值.
| ωx+φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | a | $\frac{π}{3}$ | b | $\frac{5π}{6}$ | c |
| f(x) | 0 | 5 | d | -5 | 0 |
(II)把y=f(x)图象上所有点向右平移θ(θ>0)个单位长度,所得图象恰好关于点($\frac{5π}{12}$,0)对称,求θ的最小值.
14.若曲线${C}_{1}(x-1)^{2}+{y}^{2}=1$与曲线C2:y(y-mx-m)=0有4个不同的交点,则实数m的取值范围是( )
| A. | (-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$) | B. | (-$\frac{\sqrt{3}}{3},0$)∪(0,$\frac{\sqrt{3}}{3}$) | C. | [-$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$] | D. | (-∞,-$\frac{\sqrt{3}}{3}$)∪($\frac{\sqrt{3}}{3}$,+∞) |
18.已知数列{an}的前n项和为Sn,Sn=4n2+2n,则此数列的通项公式为( )
| A. | an=2n-2 | B. | an=8n-2 | C. | an=2n-1 | D. | an=n2-n |