题目内容
6.| A. | $\sqrt{3}$cm | B. | 2 cm | C. | 3 cm | D. | 4 cm |
分析 根据体积公式列方程解出球的r即可.
解答 解:设球的半径为r,则V水=8πr2,V球=4πr3,
加入小球后,液面高度为6r,∴πr2•6r=8πr2+4πr3,
解得r=4.
故选D.
点评 本题考查了几何体的体积计算,属于基础题.
练习册系列答案
相关题目
16.已知i是虚数单位,z=2-3i,则$\frac{{{z^3}-1}}{\overline z}$在复平面内对应的点位于( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
17.判断下列各组中的两个函数是同一函数的为( )
(1)${y_1}=\frac{(x+3)(x-5)}{x+3}$,y2=x-5;
(2)${y_1}=\sqrt{x+1}\sqrt{x-1}$,${y_2}=\sqrt{(x+1)(x-1)}$;
(3)f(x)=x,$g(x)=\sqrt{x^2}$;
(4)f(x)=x,$g(x)=\root{3}{x^3}$;
(5)${f_1}(x)={(\sqrt{2x-5})^2}$,f2(x)=2x-5.
(1)${y_1}=\frac{(x+3)(x-5)}{x+3}$,y2=x-5;
(2)${y_1}=\sqrt{x+1}\sqrt{x-1}$,${y_2}=\sqrt{(x+1)(x-1)}$;
(3)f(x)=x,$g(x)=\sqrt{x^2}$;
(4)f(x)=x,$g(x)=\root{3}{x^3}$;
(5)${f_1}(x)={(\sqrt{2x-5})^2}$,f2(x)=2x-5.
| A. | (1)(2) | B. | (2)(3) | C. | (4) | D. | (3)(5) |
11.已知ξ的分布列如下:
并且η=3ξ+1,则方差Dη=( )
| ζ | 1 | 2 | 3 | 4 |
| p | $\frac{1}{4}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | $\frac{1}{4}$ |
| A. | $\frac{179}{16}$ | B. | $\frac{143}{16}$ | C. | $\frac{179}{48}$ | D. | $\frac{136}{48}$ |
18.已知i为虚数单位,则复数$\frac{i}{1+i}$等于( )
| A. | $\frac{1}{2}+\frac{1}{2}i$ | B. | 1-i | C. | $\frac{1}{2}-\frac{1}{2}i$ | D. | $-\frac{1}{2}-\frac{1}{2}i$ |
15.设函数$f(x)=sin({\frac{π}{2}-2x}),x∈R$,则 f(x)是( )
| A. | 最小正周期为 π的奇函数 | B. | 最小正周期为 $\frac{π}{2}$的偶函数 | ||
| C. | 最小正周期为$\frac{π}{2}$ 的奇函数 | D. | 最小正周期为 π 的偶函数 |
16.已知随机变量ξ服从正态分布N(1,σ2).若P(0<ξ≤1)=0.4,则P(ξ≥2)=( )
| A. | 0.4 | B. | 0.3 | C. | 0.2 | D. | 0.1 |