题目内容
11.已知ξ的分布列如下:| ζ | 1 | 2 | 3 | 4 |
| p | $\frac{1}{4}$ | $\frac{1}{3}$ | $\frac{1}{6}$ | $\frac{1}{4}$ |
| A. | $\frac{179}{16}$ | B. | $\frac{143}{16}$ | C. | $\frac{179}{48}$ | D. | $\frac{136}{48}$ |
分析 由题意及随机变量ξ的分布列,可以先利用期望定义求出期望Eξ的值,最后根据方差的定义求出其方差即可.
解答 解:由于Eξ=1×$\frac{1}{4}$+2×$\frac{1}{3}$+3×$\frac{1}{6}$+4×$\frac{1}{4}$=$\frac{29}{12}$,
则Eξ2=1×$\frac{1}{4}$+4×$\frac{1}{3}$+9×$\frac{1}{6}$+16×$\frac{1}{4}$=$\frac{85}{12}$,
∴Dξ=Eξ2-(Eξ)2=$\frac{179}{144}$,
又由η=3ξ+1,Dη=32Dξ
故方差Dη=9×$\frac{179}{144}$=$\frac{179}{16}$
故选:A.
点评 本题主要考查了离散型随机变量的期望公式与方差公式,同时考查了分布列等知识,属于中档题.
练习册系列答案
相关题目
2.在平行六面体ABCD-A${\;}_{{1}_{\;}}$B1C1D1中,$\overrightarrow{A{C}_{1}}$=x$\overrightarrow{AB}$+2y$\overrightarrow{BC}$+3z$\overrightarrow{{C}_{1}C}$,则x+y+z=( )
| A. | 1 | B. | $\frac{7}{6}$ | C. | $\frac{5}{6}$ | D. | $\frac{2}{3}$ |
19.
执行如图所示的程序框图,输出的T的值是( )
| A. | 47 | B. | 48 | C. | 49 | D. | 50 |
6.
圆柱形容器内盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图),则球的半径是( )
| A. | $\sqrt{3}$cm | B. | 2 cm | C. | 3 cm | D. | 4 cm |
16.下列点不在直线$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{2}}{2}t}\\{y=2+\frac{\sqrt{2}}{2}t}\end{array}\right.$(t为参数)上的是( )
| A. | (-1,2) | B. | (2,-1) | C. | (3,-2) | D. | (-3,2) |
3.已知点M的直角坐标为(-3,-3,3),则它的柱坐标为( )
| A. | $(3\sqrt{2},\frac{π}{4},3)$ | B. | $(3\sqrt{2},\frac{3π}{4},1)$ | C. | $(3\sqrt{2},\frac{5π}{4},3)$ | D. | $(3\sqrt{2},\frac{7π}{4},1)$ |
1.已知集合A={x|y=lg(-x2+2x+3)},且A∩B=∅,则集合B的可能是( )
| A. | {2,5} | B. | (-∞,-1) | C. | (1,2) | D. | {x|x2≤1} |