题目内容
1.一盒中有12个乒乓球,其中9个新的,3个旧的(至少使用过一次),从盒中任取3个球来用,用完后装回盒中,此时盒中旧球个数X是一个随机变量,其分布列为P(x),则P(X=4)=$\frac{27}{220}$.分析 当X=4时,取出的三个球中必有1个新球,使用组合数公式计算即可.
解答 解:若X=4,则此前取出的三个球有1个新球,2个旧球,
∴P(X=4)=$\frac{{{C}_{9}^{1}C}_{3}^{2}}{{C}_{12}^{3}}$=$\frac{27}{220}$,
故答案为:$\frac{27}{220}$.
点评 本题考查了离散型随机变量的概率,组合数公式的应用,属于基础题.
练习册系列答案
相关题目
12.设等差数列{an}满足$\frac{{{{sin}^2}{a_4}{{cos}^2}{a_7}-{{sin}^2}{a_7}{{cos}^2}{a_4}}}{{sin({a_5}+{a_6})}}=1$,公差d∈(-1,0),当且仅当n=9时,数列{an}的前n项和Sn取得最大值,求该数列首项a1的取值范围( )
| A. | $(\frac{7π}{6},\frac{4π}{3})$ | B. | [$\frac{7π}{6}$,$\frac{4π}{3}$] | C. | ($\frac{4π}{3}$,$\frac{3π}{2}$) | D. | f(x) |
9.将两枚质地均匀的骰子各掷一次,设事件A={两个点数之和大于8},B={出现一个5点},则P(B|A)=( )
| A. | $\frac{1}{3}$ | B. | $\frac{5}{18}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{2}$ |
16.已知等差数列{an},{bn}的前n项和分别为Sn和Tn,若$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n}{3n+1}$,则$\frac{{a}_{5}}{{b}_{5}}$=( )
| A. | $\frac{16}{25}$ | B. | $\frac{9}{14}$ | C. | $\frac{15}{23}$ | D. | $\frac{2}{7}$ |
6.
圆柱形容器内盛有高度为8cm的水,若放入三个相同的球(球的半径与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图),则球的半径是( )
| A. | $\sqrt{3}$cm | B. | 2 cm | C. | 3 cm | D. | 4 cm |
10.已知函数y=sin(2x+φ)的图象关于直线x=-$\frac{π}{8}$对称,则φ的可能取值是( )
| A. | $\frac{3π}{4}$ | B. | -$\frac{3π}{4}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{2}$ |