题目内容
已知数列{an}的首项a1=1,且满足an+1=
(n∈N+).
(1)求证:数列{
}为等差数列,并求数列{an}的通项公式;
(2)记bn=
,求数列{bn}的前项和为Tn.
| an |
| 2an+1 |
(1)求证:数列{
| 1 |
| an |
(2)记bn=
| 2n |
| an |
考点:数列的求和,等差数列的性质
专题:综合题,等差数列与等比数列
分析:(1)由an+1=
,得
=2+
,由此可判断{
}为等差数列,可求
,进而得到an
(2)求出bn,利用错位相减法可求Tn.
| an |
| 2an+1 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 1 |
| an |
(2)求出bn,利用错位相减法可求Tn.
解答:
解:(1)由an+1=
,得
=2+
,
又
=1,
∴{
}为等差数列,首项为1,公差为2,
∴
=1+(n-1)×2=2n-1,
∴an=
.
(2)bn=
=(2n-1)•2n,
Tn=1×2+3×22+5×23+…+(2n-1)•2n①,
2Tn=1×22+3×23+5×23+…+(2n-1)•2n+1②,
①-②得,-Tn=1×2+2×22+2×23+…+2×2n-(2n-1)•2n+1
=2+23+24+…+2n+1-(2n-1)•2n+1
=2+
-(2n-1)•2n+1
=(3-2n)•2n+1-6,
∴Tn=(2n-3)•2n+1+6.
| an |
| 2an+1 |
| 1 |
| an+1 |
| 1 |
| an |
又
| 1 |
| a1 |
∴{
| 1 |
| an |
∴
| 1 |
| an |
∴an=
| 1 |
| 2n-1 |
(2)bn=
| 2n |
| an |
Tn=1×2+3×22+5×23+…+(2n-1)•2n①,
2Tn=1×22+3×23+5×23+…+(2n-1)•2n+1②,
①-②得,-Tn=1×2+2×22+2×23+…+2×2n-(2n-1)•2n+1
=2+23+24+…+2n+1-(2n-1)•2n+1
=2+
| 23(1-2n-1) |
| 1-2 |
=(3-2n)•2n+1-6,
∴Tn=(2n-3)•2n+1+6.
点评:该题考查等差数列的性质、数列求和等知识,考查学生的运算求解能力、转化能力,错位相减法是数列求和的重要方法,要熟练.
练习册系列答案
相关题目
要得到函数y=2cos2x的图象,需要把函数y=sin2x的图象( )
A、向右平移
| ||
B、向左平移
| ||
C、向左平移
| ||
D、向右平移
|