题目内容
| ||
| 3 |
| 6 |
| 5π |
| 6 |
(1)求曲线G的方程;
(2)若点F是曲线G的右焦点且∠CFD∈[
| π |
| 3 |
| π |
| 2 |
考点:直线与圆锥曲线的综合问题
专题:圆锥曲线中的最值与范围问题
分析:(1)设点M的坐标是(x,y),A(xA,xB),由已知得xA=x,且yA=
y,由此能求出G的方程.
(2)直线l交曲线G于C,D两点,且∠CFD∈[
,
].由题意得直线l的方程为y=-
(x-m).(m>
).由
,得2x2-2mx+m2-6=0.由此利用根的判别式、韦达定理,结合已知条件能求出m的取值范围.
| 3 |
(2)直线l交曲线G于C,D两点,且∠CFD∈[
| π |
| 3 |
| π |
| 2 |
| ||
| 3 |
| 6 |
|
解答:
解:(1)设点M的坐标是(x,y),A(xA,xB),
因为点B是A在x轴上投影,M为AB上一点,
且|MB|=
|AB|,所以xA=x,且yA=
y,
∵A在圆x2+y2=6上,∴x2+(
y)2=6,
整理得
+
=1.即G的方程是
+
=1.
(2)如下图,直线l交曲线G于C,D两点,
且∠CFD∈[
,
].
由题意得直线l的方程为y=-
(x-m).(m>
).
由
,消去y,得2x2-2mx+m2-6=0.
由△=4m2-8(m2-6)>0,解得-2
<m<2
.
又m>
,∴
<m<2
.
设C(x1,y1),D(x2,y2),则x1+x2=m,x1x2=
,
∴y1y2=[-
(x1-m)]•[-
(x2-m)]=
x1x2-
(x1+x2)+
.
∵
=(x1-2,y1),
=(x2-2,y2).
∴
•
=(x1-2)(x2-2)+y1y2
=
x1x2-
(x1+x2)+
+4
=
.
又由椭圆方程,知y2=
,
∵|
|=
=
=
=
(3-x1),
|
|=
=
=
=
,
∴|
||
|=
(3-x1)(3-x2)=
[x1x2-3(x1+x2)+9]
=
(m2-6m+12),
∴cos∠CFD=
=
=
.
∵∠CFD∈[
,
],∴cos∠CFD∈[0,
].
∴0≤
≤
,
∴
,∴
,
故1-
≤m≤0或3≤m≤1+
,
又
<m<2
,故3≤m≤1+
.
因为点B是A在x轴上投影,M为AB上一点,
且|MB|=
| ||
| 3 |
| 3 |
∵A在圆x2+y2=6上,∴x2+(
| 3 |
整理得
| x2 |
| 6 |
| y2 |
| 2 |
| x2 |
| 6 |
| y2 |
| 2 |
(2)如下图,直线l交曲线G于C,D两点,
且∠CFD∈[
| π |
| 3 |
| π |
| 2 |
由题意得直线l的方程为y=-
| ||
| 3 |
| 6 |
由
|
由△=4m2-8(m2-6)>0,解得-2
| 3 |
| 3 |
又m>
| 6 |
| 6 |
| 3 |
设C(x1,y1),D(x2,y2),则x1+x2=m,x1x2=
| m2-6 |
| 2 |
∴y1y2=[-
| ||
| 3 |
| ||
| 3 |
| 1 |
| 3 |
| m |
| 3 |
| m2 |
| 3 |
∵
| FC |
| FD |
∴
| FC |
| FD |
=
| 4 |
| 3 |
| m+6 |
| 3 |
| m2 |
| 3 |
=
| 2(m2-3m) |
| 3 |
又由椭圆方程,知y2=
| 6-x2 |
| 3 |
∵|
| FC |
| (x1-2)2+y12 |
(x12-4x1+4)+
|
=
|
=
|
|
| FD |
| (x2-2)2+y22 |
=
(x22-4x2+4)+
|
=
|
=
|
∴|
| FC |
| FD |
| 2 |
| 3 |
| 2 |
| 3 |
=
| 1 |
| 3 |
∴cos∠CFD=
| ||||
|
|
| ||
|
| 2(m2-3m) |
| m2-6m+12 |
∵∠CFD∈[
| π |
| 3 |
| π |
| 2 |
| 1 |
| 2 |
∴0≤
| 2(m2-3m) |
| m2-6m+12 |
| 1 |
| 2 |
∴
|
|
故1-
| 5 |
| 5 |
又
| 6 |
| 3 |
| 5 |
点评:本题考查曲线方程的求法,考查满足条件的实数的取值范围的求法,解题时要认真审题,注意函数与方程思想的合理运用.
练习册系列答案
相关题目