题目内容

4.若(x+1)n=xn+…+ax3+bx2+…+1(n∈N*),且a:b=3:1,则n的值为11.

分析 根据二项式展开式的通项公式,结合题意可得 $\frac{{C}_{n}^{n-3}}{{C}_{n}^{n-2}}$=$\frac{3}{1}$,由此求得a的值.

解答 解:∵(x+1)n=xn+…+ax3+bx2+…+1(n∈N*),且a:b=3:1,
∴$\frac{{C}_{n}^{n-3}}{{C}_{n}^{n-2}}$=$\frac{3}{1}$,即 $\frac{{C}_{n}^{3}}{{C}_{n}^{2}}$=$\frac{\frac{n•(n-1)•(n-2)}{3•2•1}}{\frac{n•(n-1)}{2•1}}$=$\frac{n-2}{3}$,∴n=11,
故答案为:11.

点评 本题主要考查二项式定理的应用,二项式系数的性质,二项式展开式的通项公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网